Skip to main navigation Skip to main content
  • KSCN
  • E-Submission

CNR : Clinical Nutrition Research

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Articles

Original Article

Association of Nutrient Patterns with Metabolic Syndrome and Its Components in Iranian Adults

Clinical Nutrition Research 2020;9(4):318-331.
Published online: October 30, 2020

1Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14167-53955, Iran.

2Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS) 14167-53955, Tehran, Iran.

3Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14167-53955, Iran.

4Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, CV1 5FB, UK.JFIFddDuckydqhttp://ns.adobe.com/xap/1.0/ Adobed     ! 1AQa"q 2#w8B36v7XRr$9bCt%u&Ws'(xy4T5fH  !1AQaq"2B Rbr#u67Ѳ3sTt5v8Sc$4ĂCÔ%UӅFV ?_Aנj- H>>,m*>fzp"TrKkr^r.|_&]|*vPuܶvoQ1mwVJUhu-I"=LniAƕ8"۲ k*ҿ[yu:.vUQ+)%F DHyVBk>Hy8jݹ q~9D4KRmzQ)^ʔ.J%k_tVi5NTjg!'ky|5asOȻ)R۸ߩFMԿ3L4j6dڜ#NIwUF]JqB/(FafJRzq3\G՛ ?~\ 6)6W4m[O^L0E&rRMض*C .]Unl-1 1r#Rj/&QɈ׉˩s6Rj=5Tg.y.·Pӡ:JJS:C8-2u]d&vUz;7p9 5VnL֢"y)">iי(IDDd| Yj0; LRfS:ktYK%*N2^m|&dğth":ey)uPQZW)gcC3Pv&MMWd&Ŵ۲mvTRoժM03*F3Yd6\8,\hݻ kߔi<k NTwSԪmljj[>->ptU%'LR>&EBH$MQAUx[$Z6vi&_a.KIQ{hyƒ j"JOC9eFҝfj;˚Ω<[3_m% lQ@4g=5$(J]Yc-OMq<Ǎ wSzڗ)k$7VIP붾ͯnV+卵*t]iЎD31~SA1éC2u)ʼnQn-Uoi3:grI8ؓWm*G zܕ)ZקJ}Y YlGeJ6cB2I NS3Q>k=KTBT]W6+SOXQgGR? telˊ%-Re\hѯ2TF"C/OJΩ6r[N.0{SpljjX1“jOsӥ;ҭhe}xu`Ք&.)yO̒ Fߑ.$Qw;9Iw2o+RVJMSOj[SoҌZ%;`d$blQ{Ro{Imڌ>3egf\O֝Uzx"䢸g+mv%Gʆ:|V[N'&ס-ޝ'kfE|K,G&˳98Juin/\\Qݿ̋v~Ǩ!rtWU d|E߫R4d}.qPw*Ӭv5YEcn~f5c%MTMkb-F>5JT,})QHg%{("ӔȸWMsYyWNRrkkJr0XドnͫT}r-jj,Ŕʍ\Q2Ri>v$5!]"JB2WɅ)]VԜUc8i|.jeRO6^V.¸ Q&#|ܶ-*uOG%JAtRZRr]FFG\۩w+?'zչSѧt jz>KW&ot{7P&2D;&\\>Q2JzܗAKSfeNn[jRrԕf6,q,F1tRfԗ>vֶևj-&R'Zi2=xv~Elbsvm8=ӛ"ū񕜈BȩlWau[]ٷBߨF~J!|Ipr3R̴#Yp)={7:G{+:\W}n|Q#%)7^-h"Ƒq:M*%J&$T軨I333׎g_- ucBwwjp[6i25$̏bU’ٱRv?G\~#Iͪb7<<}Ezt" q_Inw,7-d,G÷%T* Wg1"䥱kq/A.,_KhqŒxwvo u2ۥۧ.bQ}XκA$֣ +K״ZUNmڸII{.v{5z5ѮRme[moyƾd~cRݾK'j.\i&/S6f|b=5: p!6i_ 4j6=.si˧eƾtS^c.Y^RJVS-Vi3,esi08?H$GvZgg?gi䤟2adw릿:"۪lkSN>q-4kI܋ێe̊qۅgDoѨ9; #T.Q;7#~_Ufstb_'w~Xw1Xk,vcOt._}v}8"(4Z\ۘgk?J?bm_c!g{HZV]Fkk%~gEt)b秴vΰB|꽸}mp~E6ݹv;7P٤v+ri*3Ԣ|'O14_~7nP{7ZU\Vű[ +7󖱅o#:ǥŬ\|3r%TJX]V7ez¨Y]lc|O3V! R zbJ'PnGqVJ"19WVeOF埜EaEJωqCN5Z g-9[S<$sUK5b|7sn\7x qmv##FF\ w[=-43$^ooVSiXօv7iB۴yg>]Vf"r$J3""32!Zh[K%7GvNLs+4nB/B{vlsobJaҺJR:0g%&zR\ S3T[&ִor*ⷳc3ʊO[iozW٨%$gn:ܶWwFBԹjHP&z u&F2\f;ipW73 [; '_̽b;vib!oec dC-tS__$Xs]l9&z$2/N>%'[}b{h/{`{Ji׉׏ YJB/X%}.|+{(S:qz]4_Kѵo`^tY_4S#* ^zvݾMr+TrkQ g.8Ͽ^i>ӈǙvix>$o( ^qt*&t1oJVu-ql5U6jCЉmĻ*"?JT=K'O/|=Vo}l0b}}f?X[?/\JSBe,kP8ETJ==?.p5ފgbU9}ǶdNKk—_$8̸͓ۍ8Di\BԿ-1v{FF]|.^ۅ{vl12׏z7-R7wE?\nh\jN/Kձr_oBw"N QMBZqe-m:ӨSn6j4%!hQ;sv'm4kcM=!8\m[M4{SMliۇ%eֽR&N:{2A8)THLK3Zj[jPBx#BگMf:G1\`edcʮ?|w(-̮vXt,bW2;.ιNHRR#YwTM"<;mk\.foIDjmlJ;vxy7o7i\,KQŊ9d^Mmgc L*.T6tLeIuOH3SJQ3=F/ʿ<9\JM6mN6=<{xkP!F1QR[I$6ُimXu2An2yԒMU q f[IB-'䤯jYm52&JG\zд\~vdg QtHGXw&1Lw+nDEdC1w|YJmvP)HZ>i0BPβә?R:QO["]I_Jʏۍ>QKyu^bycBq4lXF~l [\*N>-J6,Gq(Zr5h]CwYӤU~ʶߑ u*SIv%ZfJ7)! FS*s_\|IŸZ)J ]ܜi4"z[+Z,MOZ))}|Ʀ(RUNIII.S'ˍO~˨rn}M)xxӕ0 eyҵ7YMAB]ӣU:/ѭ*6bcwP͵ "+qēVjŹO|GtY4V j[mLV M -m>",B$ GD1~j6O4|LxnNmqATNR3ε|DŽa[fmn-ڭ+FiK7Pcm;r5 l8r{#-]'nrFh2ruycb;pW=njRqRJ(d mnpckNnʹ+6]tz~E=ʕ l ZZ5jSi3#47.Lcfe`9؏v囜.F\-UZ:*0_<Νu9Lӵm&)_3\^ҹ3"1n1v_|uRʞͫr'iȧN_kH׺8xXrj=\МH)V\ˬ.Xʸ oVRC}ySU9/OBY먌5 ٿwޞ)rw8Ӫi5*5ZΗcGƱ !ZۄlmpjJ -l <R̵/JAպZuq\IdUS 48wXJJtcg4cI~aqߓwŷrm-v)G7yS^7H^-\mŌAq|"m9IBnF㏉9[N+mmy/!KKۉ%n +BdddfFF6FQRN-U5;Sv'm4kcM=Mn)\qιqUd9F%",6MGdT%-+~ f%+y֛^3SrF>6lc(֪vۊN;g._0Sѧ]ETWرkQKzGe9ʨsKA"yC y2\[5 rԭ7Gk5Mzw_4sM3hxЊ'oÍ5jsub )ͪ~tR2H]R͍>̋m6=%(˿(Wrr-܅y5(ܔJ޺YunW̹븹NsqK ]/QR#"ZMDfD|43Qw|._ԡSqTZBg??O Ϥ)/E_U|i}2 9Z?¹0:x'3,whǣ?C y-A~=daJј&M?D1_PS+Oi&;a @;Dž7[ zZC"bv:jjMQk$M RԸ3uA\=wI.AwC"^.{?-\NSiˏ"b}T/}q/ o.1M}R%:-ZniʒL$SgrBW*,Mw'N\ɇ{s\j]VryG'8f`}'N<*/`U숻z CwHq18J+vԕKss4R53/&XTt1bZƟo\=%nO)h$rBi-nKĪ^ ջڜlwkYm[̑+/QrZo%TQ;TLs($2C:s.%+eoNttq۰kK7O0m_t_pZ1SsSM7"mevFZ[w -FJ*T*jФQRg BSu|]g:ɵzjqwmltL.e3sRMچkSmjkmWœިm++¦'tILk*բQ D,PB\lI[9{%Gb R6öۍmX-MaʉA931cs..G4CujQտ[9 }G-xwl)IQz j Ó"rqe&=]꾧֎c)<kӳ+0JrRR3'TnXi^xMF Bު*tIL.[h"2"nKzZe'ZV/RrNYz]8죝n]Ķܩ>^Ժ]u-7^\mZjܣ9+Rmn ߑv?oꋘ?&ƪy^N4o=3-ؔ̿*`}V݁ ƒPu8%$ ݗ]wt;\y\>='OjPIp/nJU8{϶FNMsf"ίNqƹ(+ ݮF2Km |jܴZs%zf*eȫ?]4)I۵nR&FX + [jDh(#哑9q9Eծj8noǕZf\J-l&Z˫}`ӎhyrΉn\űn]9pʌӣ"׮Wt?N4_I_~54#/my1Xr*척aS#DT >q ssΛW;3oUaJSRMDgQnt:Ql,/ ܷfRqiM Ȼ>Cob;A>ڦWقM9X~/!'MW.}Vrߔꔵ!5|iB(0-zF=}okڢE$^wW~nokY߮\6՜̌{i-AF*9)\t9IV6۸5ZUF6R$ŨQIq砳YUZ]eyv >hI櫥N )&l JulwE1GDOuFN2| }馥uC1rޫV+^gdb&W[4<^e4YW,d|htͮsUM)۸8:{3d{AѢ)~ \#J=NdƮꮓ90 |1K$v*?мS ]i$J,C,SG?/_՜pMSƯM|mG1V1$~K>CSvkuj=&) -,yLjuFHK{c駗.SOua;BrSqj-ۍZ#'Jys7[g2z/.u4+XV2VQ.ޕ)$"(%)#Z7suZ%j }BǬݕe)Jvz8zJf:hIN|svO1O#IEcۍjݽ:SdὮvu^@:o^5cs>i/VqmVm]ؔܢn6'vޑ̗J4Wn@OlKbX ;n:hgJ9ŻyǑz8f܌q&Y fN0N;[69 rbׅC2/#kE l&2~èMR.*%g=Ft.%؝e8<.e=Uv{~㻏"EˑnvDѭ͜Lu3u0:U֝$[M5<:oi+V4V9 6nXvx&_ q Qqw3W:uϔ2yb/(ɳ|5zQiJ#r|Hw#.W?4aDŲ\ugWG;Cw鐢K|xg)##=O.dF˟jMUvWĻsr.z]kPc9"]R)mkfOd*uYf١RsB Aîh=k]ʳUrrZsq`d#r$/Ը3o^&lRWȍyuW̦Y4QDUMJ65ƒ[+ygk XK_±k#y:8(TJOSQhJt2.DR}"5[) r)6V6u5k:eXZmv𭤔!푊Q[qQ}ҹLE- 8qIZG|UM4j}Mܕ[Vwm{} Naqµ"ԈM zOpKѰ?IAD3Ir0'/q1itoB5{%wkOBn-ۜduqIzYK60{+DʕܞqIt";r1mG/\/ym[6JƫR \L=S=OT@Ix[TMm{>ݾտ֒ݸӉLYIx>+"JVNzx||5rI?C{oz8۹e\R-^\A2F R+N9 vlT]"ۭ d)t֞i #E2jB@׵=#/N+!ĕhx}I!cM`ąZ*ŻɄҒ߮Y.Z}='/oۙ3IpW̮hT7cTSuz9>B}΄&h!>lӵn~j˅IvU.'v'CSZw8QK3G> ,J59ٷ+HSg䧎hJdzvwv-cvxS5[̊n~ؿ%ַX?O0\6ne 6kn9.ϯ} *h 8_QhLݣ7q +=XBҲ5?[[)+F`=4 }B,sNg==u*Nj9k_GJ)+R~GSPBȒZ:(K]heL=vKPӢwq(NrG^ثϣ?#tC?.ͼ[ۅo؞y#%ǛjVyLSw%T*s92JTM%"YkQО.q)gCͲn8cgi6j1MѾ[{9h^vƘǚםidfi.^RHmg&rׇz:}݃}xT$ضk'5s-狶,\vpbPD،=Okf.c#cdz2FK5T!&)|ntD<+OŹU i-G[EE*FDfeaf2QƤM\UG_{ǹm%\yrGy:.\4wjPGUJޕUV7Do\7Vy_13w;[?c]H\$IJ,*L]3b%L{y.JRKG2sq,B6T}(#nW|km+q5] r㪍bJ@y{byz,b踊3ϻJ,'^xd،)JVw#.Vټc''ÝպWtbRؒJz۠8!o9IۄS95E9ؔ-e9JR{dmnッ<[~n${~Њ$W?&ՐY_? #a.ߑv?oꋘ?&ơ|y^N4o=3t=~7!/M3>n8W홎2M`Qx+ z qy8%]7_~540ۦ彷]Wq CѡwkďyF5Dum_}~P(5.(X,K9vᯐ?leB9;Jhm#3{CxGE-S{;@Fz˙]=O'!ɿ]' r`:7'2bЖ>Iy,/eTy/V<.H?UYY{\^#ѣr9^7?xoRȆ7EoS_&??zϾM?(~Q-K&>"~aߨ t7Emsϛ+?;fCr)fY+>z$tIkjn_>vnrֳki-˹l= t;'EyC¥|/BLwBJdgjۛ$s S1|ɍV%JI6KvəhzIlBYɒ|0"Sy0F>eo5W)O+X˻u';v)2vVq۳kۮws?UʑBǴYO漪e2MIjPAک\b1)DDؚKm6ZWΨgȕ۶yjڳ 2ضN[C[|r@9Jfo<_eI7q.|cÊV߷:i.:$ȋ)1%%)ADZCEBxJ0MJۥy(bNsKM9k43IwNt.\%N簤I'.j|ƃ2$grBEٌ\}9:v*!n7M(ɽ]7c@XxƱԨ37īf62cTTfFK]9wntQHͮvٱI/f|j=7}\_V5U^+:uljSȃY(XI.ȱmo1甅jڎIZ2>#\*:gY|4k\8ZwSqtyA!+];бޞKծË¥e)#5ap.QK^8VdU{*ѽL\=qmjnB5>{ Ӟ`v±5 ^k&O~Oshɷ,;6nOW>u6{RqS`)S%jp\ipdEBLfTWy$GIYw~䲭J.1vSY5z.V>^+Ǎvc.I[R{QsNR3ӎfhd>y?UJ*}~[e\i5U^͛E]G_FS(Iɿ]i8:4zj~շsW,ˆsy:%O}iur]iF5~3M:Ӟ#N06)4ߧgdawIotiz:1r5YDZLHBSi;NQc44la=Y kQIT*ըl:tq2(է9VO4뒳܂~2rq'nrVZŦ[t7\oլfb/mlpc.I8콚q^1iE~䰳mi[dۧw֤ICfdFeCsg:i| 6擣׋* 96lust^{%99UNRvaMܽo ammi$em4D6DD\nA%$$#}۷/ݕr99JMն[oT޲E"KTaP+HGkŴj5TM5xƱOS-k`ۛkٝWz;{kS}F;~q|~^_|euwnE'pSupUP)V]vE+t =ZRaVdG6= *.ϼnj9:UɷbېmF_tޫgHjVS'śǕًdkkѻ_]Kv?nT>)^e=Ar1'3ԔILyD?:-^in):{7.؂\.:V }#뺾.3r̸*xbFM aȵz 6SQ:ײj[ 8nn iFMw rR"5M5I旘35f^j='j:nNW.ʭocZvZKV^ɚJ.cM1ZI7E'6rg탸5oZ=[m Z`\hbMUR١Ȗĉ):Jin!_7Dй+f̷eKҷvͨBPR(V`y6tw*MRΝcB.ڭTnc;P$8nFvm4(D(R#R-L -2:FP lxZKQc6I("Km%$E, 78uXIFA$RQI$JbInG]c[ֹ:ZM+n^')JmJMJRu{e)7jQDw~%yQl}BZujSSf۩QZ+Dzhd5o%BIc'GZ?}΍:>Ɵivז-%݌J5MqGWTVʦh݇ܟ~Օ_6 n'{3~mϬj'J11OȻn߃r Qr\3y٘+WӍ'WxEs^O3 o~[|7>]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%-(\D4h{UK&ӡn^m]Fݢ:`δvj俜F+) y[{{ 7 tu>gvrěOj'5 iRg[ͶFjGe n~qT$ci ۚ0oԹc*jL[sVWqj\ݻ&6"WoK:cnWmrv)o>66(F>=W^bf#c zzʞtپy%mՉPël e}J.\Zk4ttt>oEM=q)hJjI=ͥ(%]脼_88ф;͛gWG;Cw~˘$4=uWdĜTثNDkiQL9U*O"4XP`02,Ge-k5$h>ܼ]3vr6!9RQPIVSnM(ۓ{>;/Qͱv{3&-[rc)ܚI$n{Sv3[j00)-D3z}MRzVQпj,T[uVs0\}Sid;r(ݝJ>æʺL&c[jPK0~d(FKÝW\m]GTcF|Iׁ)I3~#oX%vҦEݑؼ5Żv2qAZTE^..M{ʐfȏ2##.R}*KʛZz^ӞN*lPťLf\G6[WVQquV]XAi)5J!,$iJ6o$tPZc;Kjx_n3`qIelV~vLy{fn匋Ѿn%;zV.n'-ұdd2߽1bZksPe3TI9)$ԩIN9Vơ\=2885N\ p)/a柛w9g_lױo8ݷ iixJV& ғRi{N^_oAŮE6Y7I$Nk$|Q)-*4Z)^¸%4Qm [I%.c-OV+C֧R#%ѨCe3i;w$G+_dy| Fzj$DI(=OA gj%v/]8qԯNIS*֩',Q%\44ZZ%D|Ǧʴ6&vֵI$%8(ԬƾS&#Z. }6z?b/|Jl{ץv&mpx4Z$”ڝ4-H%dGKfM:sKSRWeJAn]>s6应-W9'H]'uȫYvgK^\czp|My\鏩w/ËQ.)]\QiS`8uL뚛̸=J"ܻi\å'-)54Ue]:K\퓡vK xwBqrH\*֕TnzC.mT=t-H]SČ~Nu╏NÅ3f|͡G~B+Xm[Q7U{9"~jgK Zoʰ7"qJ,ekSeNGgϳ] ^.6:s}_,%eRg<5⿨z{ZPun#jRІ.6g T.!]xa c#jN$Zpl̋H WZu8WmMRýsĮ?Mco~sx TU҆Q :KDG4n42.<3/'^?6/ܠڒ^yrrÿr2\D}}B]^E~^T cɛ7϶Y[<֞[7d}2%QPqOLEQR\CIsj1?\}%tJ0e~ *sk"*)&ۓEi#{1J8Hrt|'ܝRr8)=ƔN'RVz:cf]F7bZyZUȘ4x8,#JG̒?.W9XnO]KO]%]ƻ O5Γ/3qÓj؍/r̺rƵ 5\&m6h.xoeX[=<3%< lZ"2h\Z[&jW3ejm?k&[]ųj+{N{66leu_+lj]q* 7g*knأYv= q ەdxЬZ|%GUrQ3jLŒqET]1% qkXYūYc[7Ś]QY\jko\</Lc7+'hMSUc6qXyؙ~6#ѯv.0$BQi5YyIhɍiy=KD!n3Vm[V%W-B%swa97ajۗ m+9~]fKq|Ddaˑ0A]_v޺mM5* F-BYHJ5}q>ʉ.6hyDmpD׬'-_v5;5[8K[viJ.3dR:oYHHh9I7:۽fi+wm^ [)odPѱ52CZUJicSw\&_s0uBȍh32džzQflcd^m|7GѹE!fO5]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%5|Y:SJE\U-(a_cƣUǽXXKiȞNlmۊڭڄR!**ܤMeȽ$|X5(Ź\rJ~ܮ]>'HB0cp XFr_c?f?7<ukSgov¥iG>>䙗i.+t+bOjIܶ . i^:nm}s}(3>NZ$2Qg([".>i.ƾ)B̋M8+"- >eE6DݥJnJˣt׻ 5.˅nJGwZD~!i۶a,Db3ZQ3O#KO5/֍ozuK'GbRi᝘NV_ҝcvם ZoX}F6z 7e5_e:ۓj=AB+iܔERadMBq*ԯ DwI/Gy*mĥiRKg6skY/#SN4e$-yXM YL?^ĸNNӪ{$r1JJRSLO]Aqm>V/s[~i/j+m>z}eI"Qvp]{ZԼ:{vPAG2=T͡@ڐ#u"E*>C;o$~C#_d/HBq^YRٽzIKbOm\~żjFFGdiQ(*/i*#.FF]©m=BmpQQQSP&Ҫ!T&^>:y)$ˑÐFčI Bӡ-t!bM WҦŶ'UZ=}zvn~oT/\ǒ'nr8 AJIӆz<^uߖ4eFC1i+v!3qNyߕni?4JZlmYFXFۼO0B\m[ tʄU3s"Sr(NJ;SKW72L4̏BVdf^Ҹj\]ȱ۪(ӷm?J-KEmWڽ^4<8qu%9pŹW~877ܾeVгS(յe^C]yX͹! םm4FGȋ\y'Z FX7e)|Gjt߹#gb\ŧq_([R8[qU$Z (ʻezV2V!iQ,i$JE˂٩ a(GK'O{vnBvryRd-RK4=qxZJMl_CuuIz @Rt㮽޳!|68\-l[џ84-2Pu" RJ_^OL>G1~XnBŬw6J0*Uvlږ1N G1q9IUm*'oWu][&UyYZbBZRZNfEJf"+2nF~Eû7n1xv.RUM$6 lAxSQJ&n5ܞwlEói"#>4׿Q.nEq7Oko[1wg8ZQwZYiqtm&~">Bo?w͡ni2峋NCEy Ҕ+%ZJ ʩq*fpˤl,~^Mχk1+:ݕ z&Y`KLӪУDr3[*Z :(SL&ݻ۬Vqsyԭs x|iI߽zZrg.:mp%6ԜvgmpIUt;QbS.Է) ǨKSV,*lڌ|5Jt3#NP.=+OZ~/G سIgbꥹJnl_DUM\iM!֔wVZuԺ,yV.Q>f v:݇WiaŸN5Ҕ[M7SsrvǣrMW= \8ZW-jsnڕ.ZnF2qt ً[ٻޘY۷Zm"Jxr&NAfA-݌to9s359݆mZ+N1-qS$D=17 x׵+%_ ve4ir6Z$FDڗnFtOr'7'{9C˨ꤡaYoace{Refnft RR"4%ʌm:Sj3)OdInTO>X'vxV#jܮw9Fog;5.~Y5\~18YQܹvj4+~t7S ﬕs %^۵ڴDZV69R^Y+rj$ԇoJKR5wB9C>Y:l+EǎS{ʲ{T6Wi* ^^9k/y/Cs\g*qڵgn4T8mERr|Ti+iPe;;.i\EBEJ 丬i9ɧM-ԼsGDrZ>r#R>~X9y4b棇9JwV۔%m(b[Tjvl}۩~nDԺ{Zo-YuK1vx.nWuO+jN [ٮ0%"΢CdTJK-RަH"$I(*ve &҉FzB,_Vpqp9m8werv')E;o&QE׵^d9˦j\_,ڵugZȻ̧8k+jK{wmr@3ӭ2 wFkzFVqs1؛.v'I%$[iT]D5Dl2 nk7qUxԫLS+sا3/ΖeZYK<["%-g/kRs:f3;*E ت wJ%)5&+&rw*霣i|sMҴ|;R+fm䡩.!**dӶ-6s6,]zAXMWjmnz%SJߴm2UXw7MQ%<!tKys#P,W>s;3IYwx<+i_\\\U6 u7P|xbn_k&ӓVOe䦒 VUr,-㘘"-LZeOSҠթrEvq8Kf%5%&K"#%vD/.ZYYŏ+p$nZkvއuW9㓱Z G wYIFyf)?ƎUm5ԉ/'k84{KO:rQI}XRuԪ|*lu)3qZ[mSm5R3".Xcَ5c®ࢫI*۳~wRϿQWޝ(EJrri&ۥ^ʶ齲Im|[yb;mnm֩uiܘq>E+Ikx߄3r33-5𹻖09ϖ9[Tz~mr5NsWl$oPusޛ^{Z;);sڹf\3oٹZmԉ/'k84{NO:rQIBø8Bݱ3n֤DiK4u& ofSȒܩx<˘|N0Fչ]qsp"}! QWw@t4ӭ+cO5%]'*{eM߲DRO1y*q8w++e!c߶ܪlZWّM欼 CQ̼빶lX{vib/V/ ai;x6~]+z]MWB>re-:lgk}պ!#9?%܋V-c[z!W?c7YNm/jRr[HOzԻefճ0q15Zp#rkQQ0tU-AmڵP/cȕ?0cZYj;:0ZM=D6g ?'UN+ձ[K ܖB2'xq9{|۫N0ku 7xaj;n\ 2[VznMlWiKbSk))f..)Km)&bGZ=>OR܍W:j'rM'wYz&/鶧{Sʵb"vջq[I-ՌZH._x*BagC'T(Q:$ͳQcMCKy?3g'ߝqnT);qs #ؤZ}OOI:cfnc8W~qy.;^pVl]Hԓ>^H^@7-AA܃nmL(uWܻS߿ Td95Bdh4t6*dDh!EhI[iŨ\L.&Nc ܮf^;$R)\rip9I|ٺ?#R.ZDZ;/]nݻqs\QE9M&Bd ]N mN*D>tgbK>+ˏ.!23]BȔR1ɝ^j'k2ƮqBQq[$di]icV/e`޵B.FIIJqbi>Ӥ|p; 6${)RU>_e}^dzdfzi %ekRVUS?6'hׂ)5.\+qUgzE2C˷ecŏ^֔ibk shesFWJ#~> Wk~ݨ}ڶ>ơǚ)׽ZƉo~B-ڼrvoE:Ʃ3ۣK7+Y`WirS):{>ڛ}:wԨ(J_";6R%[u&ƫdZ_\'np| RJwNeTW,=rrbnkڄ[M3ܴz)3- R.?:okۼ0TU'w{6&w7j1z3ON'fGoO?)S_bQ_¿R(^ԴԴG.EtMڇ&RUiW uQjU> Kiu1d<ѥIQ'RQ1:O/lŗᏩiʂv&Jc{D5 Tt)1.n[n۶X}RjqnOʽ(~[Ns{ސ⛌uO,kgo֢dRNQȄ .'6W!׌P朼tdZjFGE"]K@'i۪N;sI[{SOzk>`rRR+!σj8&TjlvA̷Q?HyjyLHNտJMjܶT۽lG?SnKN%<‘ nq[N0Sq[Ta(&t(|HGO~gvkݻTR4&Z$#ViOY1r$6YF?e4U/Mvxų:zbU^gQQ+NW_'4jfz^c'#`rvrڡ(IJ/J ݦ6 ]-CW |_{v*_q3^DZ}Ic6Uڌ8p7{crZq5ki`)mU6|-Z5^iEz3P=:Cu7DF'k%}<C-޹ֲ̱#\,(f88%X-N(ck0VLR~} G"-8ӏ/ϰKq?(#nrVTmZ;zióM4 m |UT'C^_1X.gXM{%ʤd 4\ovN":"y-,T)fLQgۢr=/CƹǨJVr[a+!rT|%Y\ٱzsS>jͱ.oOc6f$q% ǒGo;n[];ߎjrk{~\VۓNIGn:iqxo |~t5)Rxעri{Vi&NUOl_ѮMfsޕkЄay.0P{7N((BaIP$ K"U6Gl ݙqJRu+qN$ m#*p<|{:>-Ev=86N*MM긭U*uѾ?/^o7;'u,h4݌xښRM:5.(/ \իU.{F^rmF-Jɷ.>Q"[4xT^OZ~mK}T0ݛ^SAo9u?lX(' qj%=X}"^e4wˠ|rܫ 6I\Ķ;Ӻw!'ڍWg{ i U_9Avhۣƾ+:vs/MK[ɭīe{`Zgb}r[i'GE2J7Nez579wRq+Un ]J.cJ4M:h箽Wxxm^ pc\wcN%'My $$| :$Fqɏ¾^қP9J6Wxvu}ݵP>Z'FFdg"-; [¢cmWkÎT8nG%ݣ7*\խCLRYZͤiD&J#'ehbSyXK|y*ӞpS̍R`[pTr/Eg)K+92{_ n3zwz'oŸۤ+sOj J:`T>Cf*lwd\fYOP"R E֢̔L4ɥ :;.b(B02rJ蠟9>V'9M%)IqnhP<%,r'P/vNSwr#w"ݨaqc(|{kd=^0jTMR2ULNz|.<|^PfY22##!,K~E BEJۜ&jRNsHަޛg\r,v؜.jK3)[EJ2ii{KEiHP^&]Gn8x=K}Wx/KI9-ϵwQ%spܾ[^R}S3$qvq8M[ ozKxcqmJ/ӿ{_}7&ݨ\f6ZSyQz& 7ۉ[8~UNn|nkiTB+4RI8'Nc%tn{!]Ȋo.nEmʱn𵵥J A+wy#+ikǒڂ;՛s85'KmE:Ђu""Iģ5p=БbTY-ͽڔ詻ngL2Q}$de# fs^o{DUUsfwӶ;s1T,ǤtޒQ\෼J=.tKU,7čJ5 N$y3kdSMQU~mO[03 $zAڟsF5^뜞"Կ QHmrR"ӳηer+ҔZ]hE-6Jmt'ޒ=O[sQj)6K}?e4v_KfZheޓ=BV[bY}lݒTTЬ{ȫvO_qpRApVŗ 6ju=*BR)g "O1yhb=tqJ gtm\b3RY+JQ^Ō֍\յ\>+uSi{=x ^w;uӘ#ĸzLn*$anok߷CBӷ}5Yqvdž<( "_OWit5:EZj2 B ρ1̊fi[n!HQF82q1牙nqnEpT(2RMoM4ϳOu ':֧_Xjsg jP^(ڙ{2%E͖j^}ZU[Q$'U) <܂%!s"m R'G5M0<+zM6qYm$ڕ$3ǧH]?o2N<8F1̻r_my[Rf59NjpzBnl7*{.QP 3N&^BLJPjAHCK2Q}$#~YMq8 k(MFMU)8MEqTy+Tʞ-ar5yܕOXw!e;q-Jqܶ䓊Y:LC UE{/t>r"lI9)3KJjϤA 6SEE$d߇3KG*En|P\ԭTn6I-ƍKTj<1H_zwGr19wF N8ݝ+a9ɫM6mhePi%mmD! """"""*1bRKrD"vnrM۫mmĽm]ӡiG~e"˩ lhRTMk^MX["Jݱk7_ޕ*DqĒ&flՒ}`W}~SմZ{ĕ~wm*/{{ѹ_-0ط#P]xlڱ~Tn5wi*lڪ (JxioϏbqKYR|!|KN53 OS222$jzww%i}>N)E+rۥ7c$Ofl/LNث\6H9: FY󡈾I)fB֔JI_ ֣^: 9mY{66㒢7Uj]:.-os[R&gMF3˸#໹kmjq^8W"PΦURjʄWa˧T!͋ lW48JB2ko+ /Nw QwQzQ ے%$ޓ7^YL|r7!v%Trܥ &|M8~ybrn[RV gSn{{*#2#ԽᢏӴHak" ӌcwҜw&RJ07ױ>Ļ =^ BɆ)v32.M1=#6%̠tҤnzqMwԣ~s*%-j|_m*.Yx9Sz=)qE4 3pk+,`=kNRڥ=B=nŔNAx)Q$ԩȧ4z3t#Z2lҮYn$S%y- JzGpu|LBV7ZW#;Wwipܷ%(6jFG5#{$D"uۭ~]֫SrD܃fҎӾ+Tu>-ZTQ& N|$沸ii>eRWݳu'[O̻j8JۻEѩ[]vni= ڒ,[_%kC7I3Nv$4ɎЈeٸoUu:[}Do5|zNq=Tre%ɧ6&~DȍF]ƞG5q m]/w/ \ʲr8=oʔe9U(W"|S]uZd#?Se[W"ֿh][-7Nu:T=)R}.;ml*5Dlf $fF(̏T hiIUU4Szɕ t(%_|2 ~6eM;TƗK[f&]LK^CE2[ȏBOd;Mi|cx,^6;sیGpQ\NuJIFTJ~đArh* B"$H쉩eXPRj?sl"ԥ)su]xpԴY%VESH"ЋJǰ K&5^Ukzׄ8kEgS2h&Se\ Yl]WҶp-ZUvi7QS:4byqOo+[̺腋[6-_Fo.6[7$p&^ _GZԸߍkc.qqoI[9m߸YxOZЦ1uoiSH)P9Uʄjcq= S>֙NeR><;+ڌk%_qT].srNO?s[=vH[]RZHRMtᩗVؾ:/~u)ԍdg%=edVrISb{6vSu=(ܥ)mTv/J}̇8 S3ad:^hBSf؉OɔLhI_1d8,L><_A0y3rXq"'(۱;mFNII.v5_(^q~X>y{3צ I*Vܛv/jW' T'NR'j%ꔩ:mJ3SB}΋!-H-RJBТQoedi9tjENenPpke.%4]#{:>mkEɱdYWl\\\'nRM4&U>?Ќˉk÷!𴪛]]5}UqG~ݏI"O~s6(Ļ)qO~h}uԕd}Q~G,oE!&G&/]_H-O=o{k\̭bkv.Ô܈+;arZx)m?M\3lU$mk-CFXjTv6u' g:Vn_*qk:VC A%'4JV%EY)#BғO4<e׿jQQ]yUr4=wm[K1r׵%Iũ-O}|kC;/VcݩWZ)EHdžTru]8hgĵ-;=>U_ InvTm_jBM+QiF"9*{DI/iuo(=TzϖmPQl_v4z>T*ȴ>YF;ε\t]EH4ꌇ[VrLzef 2T^V>g2~kg5~Nק;{~Z~W}&ŒBӿS2$J?~(Yœ"˲ߩ\O]: J׉ښT{mmIѩn3˧)4LdFZ/zUG>U> n 5& ϴ-KJi2o]uKljvK3$bԔҚV旧iY5.ίfi96v7!v))FJM4{jG~Jt/lUE%pTAFe4qQk\ve۽/u/Im+W')v{\-E|Pms7߮DZRr۞/mu*1ՙaB܆ -xg3#6ۥtRogʌU)׎]ZҞNnŞr}F1Nnޞ;cZ{N}ۿMiuxʉ*3qi'9KHQ$WJxXyرŔe~[v5~/jN9Q4o6rJv FrdxM*iRjMzUinHdн7ᾞS=S'7 } ̽zt7K|_g J=Lq+/Bw_\ۧx\HJUPzQ<hqF[V0x==CsU7q|^ {)Iq38$_A(VgcKu06Ƅ"%i~_ˉk QCܣB8Ku/񋇵u([w}$F|8TՠI.E !;RJ^}MɒD_q2];Ɖ{5}*n7nEInO{Mwv}&q+v [V}Ĝ@%>#dXQ$f;iep.GquixVt x6bj͵mlKقQ[T]zs/&yەnM'W}!Fp_d^Tu N{ɻ'l{խ2.sTu{W^H&;1s)Pӛ6>$mě;Łnj= fLT)>׸+qReɴ[UR\L*P/!$Ӊ3Q 'K=m~6XqW3^W+ųO_[F$rR*u"T%@O +%# ]˽!aܽz{ͷvQh쩎]hGތ5ɇ*DzJDRNLi 4:{~2FmXY-zzĽ^f=]uū{/+&c:Ma{ĝDp2m܍kHș/(--m_vݮK(V{R}.k&yƴ7i^4@3f sK3^Ř˸B=]?gt5KbZB<e;kQLpxuWC}n 5ҴepB##~q= `x]KWF {GfŲ}?G.I9pjWkU]>={7q{kO/^I3==f1ɏ%nnʫ/Zu_yXN<57ۍ'vy/"8넭M2eԷ&Y,в33%IkjMr7xf nmQkX4踼>a-GcIeތw&U=-:qnW)z¥j :WqSZvԒ#j"KrIU)%qrmRoDGQ~SYRsu*V)  ,/x)MFD6O#]z 96[Ui(JRfw'y$GeUީkdMF-ݻ98F2d[o{Rn0n-xsV6Dh|Eb2E:KCOӪv4SJCr"J!!m,hRLD| ZYFm/X~ΧfrN&4Ƒ=Z9Mh.Mܵw/BdrܥniŪ8ɧ|y%œ[M=_tj?F!z5\evM:\ ~F-sg钬OWq“iiȍ<Gi%%n2rqͻllƑ)okw7}\Uk-:&fj솘XerV9yZuʼşdFC=rmo%~ZN78X(N)_7.Εn1MpJ}62jjJdI";R5&iLԸc:jmqiQj$ujp\{;v5B񥍪Xn Ą4qOERjzN(Ga٠䌡)p*v(J7#ZۻZ8O W uONb+^Qipv9GvֽƼϯrYƖKGJQDNPhRJjᡧC"21"9ѓS1;R_O7/WGz)8fE%F2ukmvSov/iZ&/]~KmI[:^~ͤ\kMi稜\ywJt3W7 8Ʒ~ݥeFgѼw"8VVSج\뻆}ݭ/J6Q)d|)zU3>k\L=;ow֯gN3pKѫ|wmkZ$z^2R:E)f>ς нd|#׆?\ǔpV{;\$ƵE%-ͪm0S6[n< kE[}mvE4DDZ^$OZ0*$~XUv҅B@^?]so#%ojw;Y#SxxueBگy v^i-)s)zV jC{7Gt.w3v,ygg8s]aE_,*E tY5k٨h=o"m泏:\6w噓aiL׎n^c\75AGkЯ0Lf46َ`egZ˓p/k;̛]kq!ݸzpԭG"}R9Ve>ˏHUjJ-&7nrnwG*Xv\˱/vN}O)ʼn&CV͍f̵]r\PMB-6Du-#RͰtRN^)mT _}nSȕC*_xBuTkJW[`ɩ`ejvsngP ڻ.-WUtܑqԹQj)t;vN&RNũT+8%IXӃ5fK՛-d9 ]CƑm|nZ-6=Hz,*aEm W3VzRšdY~Xf׀Xx"]s;)5u*ُHB BRGS6bݶؿ 9j[1*jױga7oX CUI%0v#~\-O-Ꙛuɷ쏪&5mY٦M`LJ2qK~HZbr =N'YobI. (^ ׾{_ ?OJ`S`3BN[}5w6:ǵ/iSlt=4F*d&T4y/#. ɵim5Uֲf 眕6Y7 fơ=3dϕq뚩$qTM-%r!$@A? ޾V0c~{[{;򥧅a~ڵ»&ڄv1ek=wb MLkNAԬw-x>~/r=e73VeVN)K%Sښe"+3uXuچrn ֺVzscJ峻m}vb㶓n\YbIUBT%*,0nov=;z꣓S/nSXSpl##k9mXGrZv^Gde!ŷRԠzQyjC]`gToPov{j~KRBMY}i[߶9KL2ԉO0K#m>wB[ٍ+n[[b٦DX ݲpo] [\m5qdT()mo4Oy9Ie b][wղmM~vmi۱~t \}$яimRk(L c Cvk7r9_r1 ;zv|F@KyZ[&jEji/"6$69ml#e]9s\{ScL}Ȣؿ0q/nZ*t,CLoD߉Njǚy=Pgmu6^]l-["çUʖMlʍp-"qmU>۷uFOJ%Ǔkx 'g=睋k[3u,{³WɘݪF]ՍeFX"Oy\,cچ=w/gn Ļ]#2? vqy-gXnR.^}ݺFs{ŝG]}e|#0mjx"ƬWكm?rgU^xVB":Dt>@LRbun~ݭ,w+v⪕;\U(RYa61>#Jm˞Μ9g9XKaG='u8gf}'qy#ɉw J]We.ʲ-<+&q%s?2dњztҼn`cΤmmqMdz O[-ߩӲ&;[tmܝVnr">{x<8U+p:Ig]zjGkt,uzf}dؠoJaکqEq -(:d<պ=eKy[˗^%ZXkX[C2߱\ITTLGzANM￵i]K>UsOGDDD.ZF6* ҃V Zhz{'xp^`wo8r0h ZmJ5"jb[l=yUu7-;7IT%:jFjߖm0tzU'K)څNۧYJ)4IQ}^KWm7kSP>q;ނ#)'n7&׊r?óM{IwR\j2Qn[v pe#/tAF\ϵ225q֒om6z})6҅*oqDsMf CNIN=T S2t,_ѧ}kveMF0J\Rnnݙܹy[rUc-j{yGtkQ%s]5qB.Nw.JN1LvR Ui5J ZESQԙr):MJ+g}χ!2;q([jAud][ljVK3$ײSJI=/|&tl'*n۽f.frܥ jQO8>&Z];.|7T/C}$ڋUmP2Reҭ8hFF\L 3~e v\۫]ݝNmrnB%*]Z«hKc=BTLG :V74$=Ǘy+EX'4tn(I:Ѝ;Df8c,k1%dJ6.j6ź{N~l6&*fœI7 WAlGOu-ҢH,,(ǔe뿋쩨kM܍ZſgRvQ' 9)?n|er˭|I|-fGK.rΛp8XV1%K6mvG+tc+qE&ǸC_Nm:l=_/m5^[dߌڇ.c<%:)tQ$Ow~-aY;UJ>=F)2[nk؆?훐M=l6[4(O.]2#-H^n#->&mp5~Fӛ+|| S,xag%qkEUzUgæBhߕP(7]kFnq?֖CpruZ6*rEڊtS|*tI*E}7R<,nUU֫^I7Q*mSly%rdȓd8hE<9oHhMfNSRj[i7D[Rj݊+kდq{"$$H?p\̅S?㭻;t~R߁)^/>Qj`yt[w ԛ;²~+ߔ_ YW~|o]?x^ᯛ `ʼn;g)T@vWn]>&4lp+$D̢1l|ȨF%-}.9[}w~ ԠLM9hСablfe&QoW!s?wjLK?s7yO>(=C~_nyǜu?v3vyo oI@qV-jeES^[9WoSܝh"l2C1a͔CiJ@3:Pճw=/7ovuk+\V;lDgն<[A+rX~d;m!_s8ݖ׷;;.0llUC+?i#_crʙ1~C.\–q ul8Hܶ2m`ܻM3Tov|Bs rɵ"oLS- DКw=Tv@f'6|YlD͓Y%׵-#Ѯo%:&!3o%\J<02;K87>^vgƓ# ;ݝmz^Y6=PS39U%~ &f# }o!muH;ʲŇ˷yvP+&.7e[3'vR4Yj̗IZ`e˽3o[WU{ m[sUbۋZǾۆl6~9'V*.\S2<Sd*zY[aŶ`]C$n.v^Ʌ dng>ەZ,Mmϑ :n6nϦezWqUJ4! ۇ4R! =>>Fn|Q[{pRO17ƕ~._I''00k=b՛o}Osðc2'o\3}ݭQ^2 . R1yKȣtAݿ-uܾw!`?1Whn|gzUo[ECWwjUIן)^h#1ɭ!/Z np;o;ΗŻkXs."6E`Z1 עӐ9Kl8qd q} 2Stt;#j>;խabONŗ=fwP1j)l6J̶|gV2`y/0E˛6+ԫ1? 6}KW c\KoKͨ2ۅFw–s*TԞLיuDx .kCzWXhy۶gLu|%TnupǺl-S* PRaLnT+c+*xl.v!.U=|; !_L̎뱚U=4hm:ٯ"y)$:>%(n}X'p[ȴ ^˒4kƓmzDx \ 'NqamP7nyN݅=j7%McSڵj%STy qXymvCg{w/w=wSW5r̹u erծˊsOm=DhEҚRb#n)QOxtվQwe]I}wCa'"[ۂ-z}2UuKP$㜉ԧ:mc<Ý>RoL?wu|%ҷ&K y_!y9 ??:tq3(UU-lkS'ɸ@jdzQˬR] EVPW1DJq2n:,c|ǻ̑;y{X,ۂ.u.b˕u.tKBjQ"[S園S`ٮdNبeJ&9Ơ ~0a(Vm٘L+Jr*vڑE( x0+tp˕ n';wm-ޜMOxX>{#2%jgb2M[`K*\5@8l'e=0u+w ֘鳾{y܀:R*Ya]"Ӧ%ktynlۣ65,3gU}{GYrb;ge'TKwǘ.,rpܚV]Tr,!dp /ԺU,xՉ>s׽~W5oTh yx?xrrx?)?ilbT׬,z$Ԏ.UH٠\U1pU:]JwSrGZq8àd驐,N67QYBӢD㏙W!Q25ϸo9ms-7-%3CihO.J鯽-;MZM8ku-7k9S$8]q2E(}bۏI[DKOK}3KUB^u %Y,u.-&f#]'܆o$x`Yu,dzwM;#oKxn;\[d7}Rb+*Y䛂ZuBӱl{j0O̓}LhK;[aֶaGL{Cb#S.T[>߃F]NK"u^LUʐ_ykW?!GRj29͖qa'0[npcDvV)qz9R)PۨM^aJx W] r>];eN3vxdmĘ(5W2K1䪖weF{mE/QP6\u54x5[hۮ-Nk”i[lUgL]J}5 S:EhiUrgHl!ŒJ$pe=q^b͵Q' ?6|R\,JA ڵ"TDꈭ:ymg`B5t%M] <N_zv2_Ortٵ/i/ReӮ*7[qүqEG* m"[I:6e^p"I$jԴęh!m)]GZkcjS!{e^z}+Cѥ9;R|/ֱeiUԏCNu2Zhcٗg$ݭwvr P8*7/Lk~I'Km1+MW%Bk|oOm>-#qj*|Dbѱkn|n{v#jĮqNpMIUm(7Liz;{ҜݞڝVƚVϬ+sO!OstGvxӉ']uӎ4g_ 1^-8ۦ k!)Ύ5O;YSB#2Zzχ;<.ֵOtge~.(RC#wFZeGZٸ6FFJ4e2ˇpJT$[wgV)q6muDGJ56q\I!̗ y/I~RtJ9kJ]Iy*'FN0s.[l!fw'y(7$œ WƫgyΙdMEU JQJv̋vmrۖ.jWR_M֨djYgSj0^\y'EoECjm$ IƩK>Z28J2TiJ2N#}.s cArl嫶nB.FIJ.)۔\ZiM>/hLĸ=C1s[?YMqp|94- 鮝𦔽/k^#NT(Y LS$6˩}{;5 )B۷W$qpN)qqoot}ZDVә;7TiK|6f3h$dԄ}fqݡ>Nb򗉉+ͶO]>ߡ_VtYf79ڰիF sq~prս|QM)g%l0ocJȨHz V;Bb/kLAcfPJ,ԭ{ƍgpjNR6VSI*$!yV足jᇑ.](EܣqM\qJ2eZT).<9UB/(B0j)mtKEj#׿fDI-=rZړj|'Nڤ]k*i$5qt"ݙPM6E4ke^Z8ۏhz$Q(R Ay2zfRñnpnkbkI:=j &ΝșW?׵d{+ύM'??XqeeĽ.[o=UxFS=ӷdZwenՄ]_X=ĭVa* pKs0ބۍfJ3 gz̚i|wnxtjc¼5${(1fXQ65ȼb̶Zkn>%FQMJXӡ{TZEVNᖣimT/37cNJUPnP҂ZOE~"-Rc4^b- FEͧtf5[)S!OZIښݲ͑;tvܡ+N)AR=hCNn;wL16-:特7M$=Tҕ-.R[HٷnXk sn[ҞD-0WS9p9:-Ϸ-jѬNu{ҹfv)[Ľvwfg(ٷfe+0mYj8Q1\ݧg]Eǎvڿc!4#j5̋C2"}BRriFp7=ô\TZ:\BLfj#I22װ<;صZl j 6:l"6]۸ K'6RTѯ^ئOԓV\?$x7s#r:Oh{ց=MmuHԷd{pN /܅:UE#Yy+(SgQ(Щ)RHzw>^Ѿݻ>mK&^ '$Jۻ&w%F|xfz%˳ L~3N?Cy9 v w/{ƿ kz3x> sXv}vP"@WyC z`'톽Dw%-tt yVY\wmuPYQA0iG-2JP,6/gˢ]u.-n!Zw.N7Q]Df}Q0({a\@=i_X7gFǘ8^⻲}G MZ1)WEfO12G+=-B@z\`||w6ċj߬m}UwRox֢I &c~XGP6Qndpvܻul'V7^FJt^{b^B(L~sѣ6@߿^xqU!ڙ5|Vpvef-uӥ^3  FSDɯKD%0r}FF穛r7 +o"V8tv̖NQU!5uFd"bCr^bJ=֤fM#ʳԷP0O-9xRBm\=`r-:;~3Tl(nXtXi%2Vٛ#vwqƴ`L@"H‹qW.j,JM5B[)WܺUeZFqc'V˷1W7V̾-MHФwn8N;HPSdݷC7&2j.W\τGŎ'Vb]c.x+Rx1%C2T{myg[qU|+m:M:շ8҉yWd)ՋWS%%:iqlʹmGwݹ WnNŤѩ5(9hTٵDdGUi-)vSs2 2{OnT$Xck n:¶(lASLeȔBjμPpTb2~N2~%^k[ܗ[Jzs0ӓHBKq[}JَA-$dFQgjxxFv4r/x*Rm% `4J(&iv7SkԲmSH1YWmx 8n.k']:Z˭_W >ڃXЩ. jTq%Aā[E}amc]D:rmHRiu:uӚӢ\p(5-q%e)(۬ҖȽIf<߽pr&ݫVfY91q2ĭEQgYbTGQ&,yL+N$[q*RVۉQ=FuTܻ>f>f㋳8N6$܌n)9&»iˤsX,݅܍ȩv+sRTpO}d?Wn/Inpȸ%O]StQO|v5\}7Zwb.AIVK^:wb{[uݯcytO߶S<{8KSRׁH̏N7ۚ[xkwYy_'ZӵF+>쌛ZUĦreE9F[24De{}@:ExWs-\ǻ7K-\JNvEk%:s˙#κ].oͳ;լ7wB6nwu:$L; DkI#Wz.:Xp(˅v$Sq,wn\qIN-e<5Oe+vuYTpcojUI_ާP8 O 7&VL8z$_B-H-[uh]T{|8=qVRN-:Ij:7PUtXϷmy鉿:RIM~33ӸS2#׳GdŲ5+/Bx{(WzȨ5Y㞎#|˖+ ط.|e<o/rߔX>7s}VE.OVti׽ .5nNJO"95{#q}Ay9do]R"M6z\tnNS-D!@3N_jicWsy*5uٮRcWv/.,j}=S)j5C^> Ie =gu9ӛqjtz]۪TMoߧI!Ǧ¶m:,"[L!{qAv-o 3{"KʼnrIkfٶj2ƙ؄S`7` k6jzޞ?e5G&6uʷ2%ԒRKE*G\Npom F/V |C0.q_eenƣ<5Oh'67ɪn[SĽ{ڔjǘzs;~׌(ۂ`ܢ1ƣ` _l9Va6%UQWh~P~\F^ZHR@:ۧCJ{ôGeBh;~ۧnU J\O+n2 RҠ)ng}Kh{5+S×ܛ.1ZjG)iRȤIN 4%{oΜ/eO[Nffd ĹK?nnԼMqX'܌nZvq<ķbFnͪaQ`5 s,M_լ?-@_{w{ӺձJ}GF[%v\5[ŒGkOw/ΜM9rjË%2+rd~+󲕛C9U۳r[aJǭm|˒LAʨSCq[XMۺoubfp:t+ΤĻo ][ zt-*67kvS7D·MMCQXm;)܎n_h%]4ܙnRk!]ڵsDUF"`R, &#R_*[z*ZqFXɻ]7|۵w+'pFDەs=r./ᐚm3Hשy yD"jHCr':sA65نѮ^o1V/ f;nFr3VM)e*- s D'H݅fӧ\*޷[k<7u<-]֍Q8R h|p=WlW3s%Q %3l}@U-K6f-NϿu|ڴmWN׮[׸F*mW\%r! C78:޳vBG7ŵ.JթԚ2x)ST!řn~9 W:Wpܢ件{xf8ٳwKE ҰWxVB\qBZ 2wMb[lGSnyԚ~z9ZmያvoN2Afnݽjf>)j3 !;gOYʹK" Wftڎ+׭b*2ϻK>ۢӱeyԪXISUm[z+ugX%0lϏnvg!;t{BqPj>PyvR7Cj]O%+ݲ :qiMj6W}3vC/R=4Som]ŗ=ю, TF6U_-\6MyskwMr&Q\wjKܩyMϣUj0*}RZܷSdY3>Zjqj6TgzpA/M`/Cmл,޻feE[/+uk^Vs1W$G(JsW2ٰu*߻q*Y޵.Wi:ur5T),=0uRmho.twܖiYwrWHntvEj8qhf`Ͻpf(R&>Ki%I7$QӖm-2 ~yߗQ-앑/ x[k8nw.c㩵k}]FkbJl:{.(˩n0Hqvαp7 귎.Gupx[N`Yq'+ruU7[ү+>!xrȫoSo]OC# d^Q]\>!ƛGw^Mx"-+%vdX-:M2UR%d>%l ioSu6lsj7D P>XxHz Ukà(n^Q V>5cVtWj SEiJdznyej[lE' 3kuٌNn4JW)gB {4 j6&]' m-(ZMEz8cz>WZ6#7+[,MR-Z!4ܓtCyE|umj1ƽvƷV\;%>Q :#Le(iVz5 4ũۤUWxX ^(ҔsլB2w-V ^R+; ˂M\z+Uwr+RWY⺧~ Q*JcYSNSλUd8in=v K낫k\IRרSUaCFmϿ5̗P|u ZTԕ}>oYѲ1sfP+sQkX8Gb~6r,s>^\,mGL+7[n-E\.Fqḕcl*Jmjb5 ,m]c}NXfeVlǸJ5eˡ$4%g~N p4Y*WwW٧<8v#;qԩTut,m"#Y D\5V`\\Lȋ];LȇiS6ϝZ l>LruR\v=ǘϔDg=ԈdFZ+M{=|,[;0>RiSi4,S5}yxw&(E7&fݙ4UՕ! ~'Id)]ǽu2K-fޭ \08Vڅ쓬=Vy^^ IhyKR-B#Ըr=]mܻӾ'*Umkoy rTqT_i,/8Q^<ݤ|4ԻO(܄"'5N~#m.(Ҿ2i6Uev&I*<}҄$eNtÛzyWJubW^iBW.܅Wڮg]irO6Ve90sgv.+sV޿aޔ[p?3q*FutUo*eL\KM'EG*ZcAFfG5J 5jj=MJ3OK:k˝'NMB7m3uFҕ\-Ywg%PRqMIyZGY9|μvn߻5cWݷa^+X֥vnݘ\v7m>Fgzv"-;Ew֝}1|RjN𿊀7g#֟*GQQ|#/bo]p$>_Un9гUbn9׃ErQBU-^vDmVh'<R[fdHT]*~}3j;nvjc7s-rӳ Y8[n[1pJx kX[Jk9Mn!_Nю6x:iZ˦U |߉^Ԛ݃hYxk &U^bwKk.[jE+P(˞=9j@snCv7%c_7=xǁ<l {t'酚+1F‹l׭:ݻILruǶkL-L(K0L1&>wXB(pm;1fpnlp֓%Skidkt(U +xulo'/ڕeN r=^pZZ:Pnj8Hf"48ijY[ N[yZٻ+=  ø:3 ?^ܷ^Sr#YK[UF?CuhC b]GM')mڏsNrܗI]ljq6VB. W,UK"YX5{c >Iqā> T:n!,5l2VzCl|+I[*SrjnS6٨y+x,@>П.g+!rn9>N|W>OZT_ut Y""v7|sfި;Pclm EùN,{'fNT%U&LfH8~1v>Il}统u6P˗c(WV~H^bMU.o*oOF0N:_:6Smr_.b+|ݶYY غF,mwjv>f*>QM뭱Sd:`N{l/⎱;n-z~"Gze퇎J5S KG9!Gn;N1 ݎ h6m|S?ɂ5'WOÞ 7|7^ao @mxGmi^jϽ>01Mf0լD3-2T. VXR"ɥV Kl J O7|u?bvа;6.eߓ|[1bmRr,eRz`z 6܎-ͨku͹Fː dPhYgZUj}nvX;z=gVեTv_J }\1n7w2J?ޘγc\E 1Aޑzq;\r]]\Y&[nsNei\uURje*Qk2CSl*xJz-xٶlm+|UjUؓ`Ladqiĩ!Gd\W~fz;Tn*PdRM&T4`չSWq5k훶(N"Ӎ% V]֦wb.nUO!u*J&Oӕ2e|Z=eV쫚΅g#+/RW:طnbi*Wyo)p{:ETKؚR(RY+r웓r(IF) VmȵNB:h Q1ғ|u8E]{,'$-TR[j49l*3"I鯴zhd>Q+\BkNF=.$ZR4Nwհ(IpNi.(Gi33#33e$FXK*NdWrud[r{xnk$v2ıh+J1TQ[#JQl[tRO]LHKٮ NӍnF񨔤֞Em'MILB"ԋ%dBŋ+p̿_17jzT~4pc Vo\ƹb9Rq-'1j;8ܗ)hE%DZKS<璸Bu*%*Yw5ڻ9ۣ^z4U; Ñk\U(o~G?VUĎ:?P?_F_Kߤ~ᓾI |pr.Ok\SklRhҪz{­P .}SktZ7UQ4ڌIM8̈eaӊJZ%FFZu,KZvln廐SNFIVtuNi?CM5]+Ph,{jN JSR$IS^tSUVrORYu.9WyP6 [Kiu m!X|]Y79ӄ)\ģ)pbڳr%*&ꑶ_-H*dzk)1 V3')UAϹٶWRxe'պn۫h7AR9 EAJeGLms!%D| A 5]/Q3eb̄vnVn%za\m kZnv([emqrIҕij|""><hjJשvvǕ|Pޟs}V~2&Z?+2N&Z4w@)4iSڪ_>/JN9Hiۏuf8'It[ȲR.hZ$ȋ_Y ~U<UUO*6b)Ovzڜj\R̋.$FsQuҊj^נ䈈y<zZIuP[}Qm=C?zN(Exqu/kn S-FzKZzOסӽjJ\)F3b!r5ٝ|;6 o=-3*λ]αb\abqRi-w޵⦪~b8Kpo)Z=>)ғ"5/GTZLE-輵f7ݘ۹~+&+w/7GFI:l33fg.N~۲\2|*cnermnnM+Fq"ѪIz%j =YW8@~gc/~?N'?)«qȸs➟n=k" X“m֮VreMh2[uݖ] *FܖN)MȐ`f0 g,C9̑o;ddudJ=In13:ݒvvdMUEJLp^,6t-@͐9'{7m{-3,>hnF;ѰM)->>+Ěz!R* :`e--m7nB\u{b U>[8֪]6^ߤLʦ\DFNo$$dͶlgno8OrsQ\l̯hRo8tuNo+ CTxu!2[>ctFpeޓƻֶR"3QrQuOѳgwQr;S~)6HhZw/GgVTmUf_yt7%$];zLWF̰xy2Ʉu!MCmš_0[W6jf#a-KLi+3Q7c^qg%s<1aYIQeZf+}>;S6L0]Yu_h9߻<ƅpmiM$AVvŚ,*#t2.8Y)-Zhshü97/#Oro"u^/uFgWɺ,p:6a,^x%$Yve^3PƗMnTP&yS}OJ '덫MH^:rXԴJۋ/rI;S*,+yz1hv)Qw^ڍJ2oL׊q(\fDj:^T%vOadɂnS}ZO)N*λdaȜkG_PIEO}нa(^iQX᯦-7^)%g'SJx(.S9zVɴZ{E ))ۅi/s7 VIV-|sj0*UBTHIqRf>FP$KqN0 R̻8j\GcC}IUz\i 6F)Q{Gҧ3qSzKj-Az VЛS-zy:8*mNk|D鿓ND2u+0Yŝ7kqm·?8Ib]u>˗^_>(]vӋzv+ݩ){vZrJ2RQ몋C$z [,pp,8mڊbR]Il .f~d/ݓs㓓mͶ{mgjQwn=Oic9ܚm4Q/6ݨ[TƧ?nԶoytf{@AzT{e{[O'ZRZt~AGD?s3􌿂ՉIw'|~U\ w~di:Kޱ)U/sU%njѩ&GSP^ǝd)..!^U` 1wX[aԇSxoFV6_扐)T 2Mfd=ۖͭiZ7KK Bi9%7@<3<ճԻU,},a}FRqɛr i@ONJvK KLN M, ʖv0n-]DwlI-X6ܶ$Jʴh5O+mOI+Ra瞠\ MG7BفjYo1#͖0V`Ѱ2M?c8>-Crt*JkIGS:e#hPKx[鱼>{5m;wcն&>j-M֥^َ) 6yȜl_w{-ō̱r> U=]iw3)r*]:K]6BdCTZ|>gf}LW}[$'Y5 &c -j.z6R 67MԷFMnÌwI7w5E}o޽+K ֵy4܌ȥW"COyR[q5Ӱ͙f[v"_#q{MV6܍3"u9BK(41ӯqˇc${ߝCi6I(OmθzҜ5k^:>Jzw.>qV8{vU[ڶEm|DžBz].KHjI]x;Mɗ{m,qZXr忇2u^RO2Z}ZێS[2Jen!*NDcrBUً4<ǼMҲs1Zw57c3&ĖڻzmP*FuJG1-dN:|OU}ҵgi2t~F^^Z.VxjvŧnNNh<:]^~NN+ge^g.SԔGFe߯'[vn'(ScJ]kܗ7eJOlRrfziݮq̋S"\*U<*W]k$FջV}? 7g#֟*GQQ|#/bo]p$>_Un9;l S VvQU%OLU{οmU6bZ1MTx%!֙Q7, J=!3 ;Q,ڌ;6ͱ݅q^&ߔ·n #WbwӖX.HtG)N&d̵zpI,n cu ޖUj+VXUp[w]N o.J6Z8Ts&utxln;~HPHS/xw`G\ʡ¿rj Z^vt"[L:SD\h0sUwR,}[x^X,R2Vn< ]2YDr[SRKs8tXb̷G?Ps Tv 3be,zVz D[/I.KOEQrm'$7|[J>r S`5յwT#\w1FTz\Ԛ &"ׅhSHrD\'r]~/>p;:Piuu:"9ő=tTaS7V2rӷk7mb[^WmPp*[y.Þ6f]cizJCgRR@UVl큝.WJP1N{/\whZ ػϧӱE7|E֫Sί.x-Y&pi%v''-x6r'Ws*6=DwwUu]=C?MK [yrtܒG$!WGqJ*%SAz ED[^)/tė/g=#Omd.|^n/sl׉g DZqemqowݮRzUܜ=ڽ-o/Iۖ;qVʘgPp|mm;6zGl9.8pwWgsJ2qPbe}}UpNjٯ}7TMQKrؽtEx%v w߾8%|j;~|}pK]ơ/ w߾8%|j;~|}pK]ơ/ w&~e_H 8PL7:%ʭ5Kw&U2vwR_+rm'}C7#rWoO&HoG?M$UR7{FU]u ;# !Wk`|W>׹潇9Vn)6)*ҹ{%qV4q>W1vi#T"Qk&GwxcJBJ- Ϸ^ˁxkU}ԣ/3.;]J=<*)cS)ROK9H=,r zX @)cS)Da^ԽQ gxJI=w֣gf*TRj

Correspondence to Sakineh Shab-Bidar. Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No. 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd., Tehran 14167-53955, Iran. s_shabbidar@tums.ac.ir
• Received: May 23, 2020   • Revised: August 7, 2020   • Accepted: August 31, 2020

Copyright © 2020. The Korean Society of Clinical Nutrition

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 5 Views
  • 0 Download
  • 6 Crossref
prev next
  • We aimed to examine the association between nutrient patterns and metabolic syndrome (MetS) in Iranian adults. In a cross-sectional study of 850 self-certified healthy women and men aged 20–59 years old, dietary data were assessed using three 24-hour recall. Anthropometric measures were done and blood samples were collected to measure serum fasting serum glucose and lipid profile. The MetS was defined using the International Diabetes Federation. Major nutrient patterns were identified using principle competent analysis. In the first nutrient pattern, the individuals in the fifth quintile had a higher intake of vitamins B1, B2, B3, B5, B6, B12, zinc, iron, saturated fatty acids (SFAs), and protein. In the second nutrient pattern, individuals in the first quintile had lower consumption of zinc, SFAs, vitamin E, α-tocopherol, oleic acid, polyunsaturated fatty acids, β-carotene, linolenic acid, and monounsaturated fatty acids, compared to the fifth quintile. Furthermore, in the third nutrient pattern, the individuals in the fifth quintile had a higher intake of potassium, magnesium, phosphorous, calcium, protein, carbohydrate, vitamin C, and folate compared to other quintiles. We identified the second pattern had an indirect association with systolic and diastolic blood pressure, triglycerides, fasting blood sugar (p < 0.001 for all), and total cholesterol (p = 0.04) when it was controlled for body weight. Our findings showed that nutrient patterns may have an association with MetS components with mediating body weight.
Metabolic syndrome (MetS) is a multifarious problem which includes various factors [1]. Clinical conditions most commonly identified with MetS consist of insulin resistance, dyslipidemia (particularly high triglycerides (TGs), reduced high density lipoprotein [HDL] and low density lipoprotein [LDL]), visceral (abdominal) obesity, increased blood pressure, impaired glucose tolerance or diabetes mellitus, and high incidence of atherosclerotic disease [2]. Cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) are the culminating consequences of MetS which are used to characterize the most severe cases [3]. MetS is globally prevalent [1], but its exact prevalence varies according to the criteria applied, and often parallels the incidence of obesity and T2DM [4]. For example, in Iran, a national investigation in 2007 demonstrated a prevalence of MetS around 37.4%, according to the International Diabetes Federation (IDF) description, and 34.7% and 41.6% according to ATP III and ATP III/AHA/NHLBI standards, respectively. In Tunisia, another Middle Eastern country, the prevalence was reported to be 45.5% according to IDF standards, but based on ATP III thresholds, it was 24.3%. In addition, higher prevalence in women, compared to men, is routinely reported in Middle East countries [1]. The etiology of MetS consists of genetic, metabolic, and environmental factors [5], where dietary factors represent a significant feature in the pathology of MetS. In recent studies, dietary factors have been purported to represent parameters related to MetS [6]. However, there is a dearth of studies related to nutrient pattern versus food patterns [7]. It has been asserted that the easiest way to make public health advice is to use the results of food-based models [8]. Nevertheless, nutrient patterns research has various benefits, especially in an international research context. Firstly, nutrients are, predominantly, worldwide, functionally not interchangeable and, different from food patterns, may characterize particular nutritional profiles in an easier way to compare populations. Moreover, unlike foods, nutrients can reveal information on non-consumers [9]. Additionally, as compared to the use of food patterns, the nutrient pattern approach could better indicate a combination of bioactive nutrients in intricate biological mechanisms related with diseases [10].
Given the distinct lack of studies that have been conducted on the relationship between dietary nutrient patterns and MetS, the objective of our study was to investigate the association between nutrient patterns and MetS.
Study design
This cross-sectional study was conducted among 850 apparently healthy individuals of both sex, aged 20–59 years old who referred to Health Human of Tehran medical center in 2017–2018. The sample size of 546 was calculated using this formula: n = (pqz2)/E2 considering where n = sample size; z2 = square of the confidence level in standard error units (1.96); p = the estimate of the proportion of normal weight; q = 1 − p, or the estimated proportion of obese people; and E2 = the square of the maximum allowance for error between the true proportion and the sample proportion (= 0.04). In order to compensate for the potential exclusion of participants due to under- and over-reporting of total energy intake, or attrition due to other reasons, the final sample size of 850 participants were selected for inclusion.
This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the ethical standards of the Tehran University of Medical Sciences (ethic number: IR.TUMS.VCR.REC.1398.429), who approved the protocol and informed consent form. All participants signed a written informed consent prior to the start of the study.
Eligibility criteria
Participants in this study were selected by a multistage cluster random sampling method from the 5 regions (north, south, east, west, and center) of Tehran. We selected multiple health centers from each region and then we selected qualified individuals by easy sampling method from each health center. Participants with a history of diabetes, cancer, and CVD were excluded because of possible changes in their diet depending on their circumstances. Also people in the age range of 20 to 59 years old, apparently healthy individuals who willing to participate in our study, those who were members of the health center and living in Tehran were included.
Demographics
Additional covariates, including age, gender, smoking status (not smoking, quit smoking, low smoking), marital status (single, married, divorced, dead spouse), education status (illiterate, under diploma, diploma, educated), job status (employee, housekeeper, retired, unemployed), and physical activity level (low activity, moderate, vigorous) were obtained using validated questionnaires.
Assessment of dietary intake
The usual dietary intake of participants was assessed with three 24-hour recall questionnaires. The first 24-hour recall was collected by administered by a trained dietary interviewer during a face-to-face interview [11] and the other 2 recalls by a phone call to the participants on random days of the week. We extracted the meals and food groups from these questionnaires. The variables (total energy intake, crude, and energy-adjusted intake of all macronutrients) were included in the software. Macronutrients were also considered as a percentage of total caloric intake.
Identification of nutrient pattern
To identify nutrient patterns in our study population, the principal component analysis was used. Also we applied factor analysis with orthogonal transformation (varimax procedure) to derive nutrient patterns based on the 37 nutrients and bioactive compounds. The Bartlett test was significant at a p value less than 0.05, the Kaiser-Meyer-Olkin test was more than 0.6, and anti-image was more than 0.5, indicating that the correlation among the variables was sufficiently strong for factor analysis. Factors were retained for further analysis based on eigenvalues on the Scree test [12], then nutrient and their loading factors were stratified into 3 patterns by the type of nutrient patterns. In this study, we retained factors with eigenvalues > 3 as this cut off could result in more interpretable dietary patterns. In addition, factors with eigenvalues ≤ 3 did not explain sufficient amounts of overall variation. We computed the factor score for each nutrient pattern by summing up intakes of nutrients weighted by their factor loadings [12]. Each participant received a factor score for each identified pattern [13]. As simple linear dose-response relationships are unlikely to be found in nutritional epidemiology [13], we categorized the subjects based on quintiles of nutrient pattern scores.
Physical activity
Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ), which is an interview-administered instrument. Based on the criteria, data were collected regarding walking, moderate, and vigorous activity, in the preceding week. In addition, time and frequency of activity days were recorded, and finally, a physical activity score was calculated. In the present study, we used the short form of the IPAQ (the “last 7 7-day recall” version of the IPAQ-Short Form), which records 3 intensity levels of activity based on the metabolic equivalents (METs). Finally, METs were classified as low (< 600 MET-minutes/week), moderate (600–3,000 MET-minutes/week), and vigorous (> 3,000 MET-minutes/week).
Assessment of anthropometric measurements
Anthropometric assessment included: weight, height, body mass index (BMI), waist circumference (WC), hip circumference (HC) and waist to hip ratio (WHR). Weight was measured by a digital scale with sensitivity of 0.1 kg (Seca808; Seca, Hamburg, Germany), while the subjects were minimally clothed and not wearing shoes. Height was measured while the subjects were standing, not wear shoes and shoulders were in a normal position. Height measurement by wall stadiometer with a sensitivity of 0.1 cm (Seca). BMI was calculated and expressed in kg/m2. WC was measured at the midpoint between the last palpable rib and the iliac crest using a tape measure, during exhalation. To reduce subjective errors, all measurements were taken by the same technician.
Laboratory investigation
A blood sample was drawn about 10 mL between 7 am to 10 am from all study participants after they fasted overnight for 12 hours. After testing blood sample, people with a blood sugar above 126 mg/dL, individuals with history of diabetes and those taking blood sugar lowering medications, they are considered as diabetic patients. Total cholesterol (TC), TG, high density lipoprotein-cholesterol (HDL-C), fasting blood sugar (FBS) were measured using enzymatic methods, based on colorimetric assay, using commercial kits (Pars test, Iran) with an automatic device (Selectra E; Vitalab, Hoogerheide, The Netherland) for each patient. Individuals entered into the study with full explanations about this plan. Satisfaction was received from all patients to participate in this study and for blood sampling.
Metabolic syndrome (MetS)
The MetS was defined using the IDF: WC ≥ 80 for women or ≥ 94 cm for men in the presence of 2 or more of the following components: FBS ≥ 100 mg/dL; systolic (or diastolic) blood pressure ≥ 130 (or ≥ 85) mmHg; HDL-C < 50 mg/dL for women or < 40 mg/dL for men; TG ≥ 150 mg/dL [14].
Statistical methods
Characteristics of study participants were described using mean, standard deviation (SD), minimum, and maximum. Absolute nutrient intake was expressed in grams, milligrams and micrograms. Nutrient intakes adjusted for energy the calculated as the residual from the regression model, with absolute nutrient intake as the dependent variable and total energy intake as the independent variable [15]. As simple linear dose-response relationships are unlikely to be found in nutritional epidemiology [13], we categorized the subjects based on quintiles of nutrient pattern scores. Qualitative variables (gender, education, job-status, marriage, physical activity) were present as percent of number and p values obtained using χ2 test. Assess components of MetS across quintiles of nutrient patterns' scores are presented as mean ± SD with analysis of variance (ANOVA) test. Association between weight (mediation variable) with blood parameters and all of the patterns, mediation analyses were carried out to test the indirect effect of the weight on blood parameters.
We categorized the subjects based on quintiles of nutrient pattern scores. Quantitative and qualitative demographic variables were compared across quintiles of nutrient pattern scores using analysis of covariance and χ2 tests, respectively.
Means of anthropometric measures across quintiles of nutrient pattern scores were calculated in for 2 genders. We used ANOVA test. To determine any association between nutrient patterns and MetS, with the adjustments, were calculated in different models for 2 genders. First model, unadjusted for any variable, In the second model, we further controlled for age, total energy intake and third model, additionally adjusted for current smoking, job status, education level and physical activity. All these analyses were done using binary logistic regression. Again, these analyses were done for both genders. In these analyses, the first quintile of the nutrient pattern scores was considered as the reference category. To compute the overall trend of odds ratios across increasing quintiles of nutrient pattern scores, we used the quintiles of each pattern in the logistic regression models.
Multiple mediation models (direct effect and indirect effect) of the relationship between the nutrient patterns, weight, and MetS with consider confidence interval 95 percent. All statistical analyses were performed using Statistical Package for Social Science (SPSS version 24.0; SPSS Inc., Chicago, IL, USA). Statistical significance was defined as p ≤ 0.05.
Socioeconomic and clinical characteristics based on quintiles of the nutrient patterns are shown in Supplementary Table 1. The mean age of participants was 42 years. The mean BMI was 27 (overweight BMI classification). The mean blood pressure and lipid profile were in the normal range, whilst mean FBS was higher than the normal range.
We identified 3 major nutrient patterns. Supplementary Table 2 details the principle factor loading of nutrient intake. The first pattern was characterized by a high factor loading of vitamins B1, B2, B3, B5, B6, B12, zinc, iron, saturated fatty acids (SFAs), and protein. The second pattern was characterized by a high factor loading of zinc, SFAs, vitamin E, α-tocopherol (α-TF), oleic acid, polyunsaturated fatty acids (PUFAs), β-carotene, linolenic acid (LA), monounsaturated fatty acids (MUFAs). The third pattern was characterized by a high factor loading of potassium, magnesium, phosphorus, calcium, protein, carbohydrate, vitamin C, and folate. These nutrient patterns represented 42% of variance explained in this population.
Supplementary Table 3 shows the nutrient intake based on quintiles of nutrient patterns. In the first nutrient pattern, the individuals in the fifth quintile had a higher intake of vitamins B1, B2, B3, B5, B6, B12, zinc, iron, SFAs, and protein. In the second nutrient pattern individuals in the first quintile had less consumption of zinc, SFAs, vitamin E, α-TF, oleic acid, PUFA, β-carotene, LA, MUFA compared to the fifth quintile. Furthermore, in the third nutrient pattern, the individuals in the fifth quintile had a higher intake of potassium, magnesium, phosphorous, calcium, protein, carbohydrate, vitamin C, folate compared to other quintiles.
Components of MetS based on gender and across quintiles of nutrient patterns are shown in Table 1. We observed a significant difference in FBS level (p = 0.006) across quintiles of first nutrient pattern in men. Moreover, we identified a significant difference for systolic blood pressure (SBP) and diastolic blood pressure (DBP) (p = 0.02) between quintiles in the first nutrient pattern in women. In the third nutrient pattern, we identified a significant association for SBP in women (p = 0.02). There were no significant differences between other components of MetS across quintiles of nutrient patterns.
Table 1

Components of metabolic syndrome across quintiles of nutrient patterns' scores

Table 1
Characteristics First nutrient pattern Second nutrient pattern Third nutrient pattern
Q1 Q3 Q5 p value Q1 Q3 Q5 p value Q1 Q3 Q5 p value
Men
Age (yr) 42.45 ± 13.77 44.39 ± 10.26 41.80 ± 11.34 0.89 44.23 ± 11.05 40.13 ± 10.22 45.04 ± 12.13 0.19 40.71 ± 14.09 42.74 ± 8.47 43.61 ± 10.47 0.83
WC (cm) 89.55 ± 8.79 91.64 ± 15.45 93.97 ± 16.77 0.59 125.87 ± 21.09 118.43 ± 21.86 120.58 ± 29.70 0.72 87.03 ± 12.71 90.29 ± 15.17 94.68 ± 16.53 0.17
SBP (mmHg) 124.25 ± 17.87 120.46 ± 30.43 127.56 ± 16.33 0.22 125.87 ± 21.09 118.43 ± 21.86 120.95 ± 29.70 0.61 125.03 ± 24.83 120.82 ± 24.37 122.59 ± 24.36 0.93
DBP (mmHg) 75.75 ± 17.39 78.57 ± 22.00 83.86 ± 12.05 0.35 82.87 ± 16.84 79.00 ± 15.83 76.33 ± 17.96 0.55 83.00 ± 18.55 80.17 ± 14.79 79.97 ± 22.14 0.88
FBS (mg/dL) 107.05 ± 37.41 109.36 ± 46.86 106.07 ± 23.30 0.006 109.81 ± 42.55 100.21 ± 12.79 116.67 ± 39.44 0.32 104.50 ± 31.39 104.79 ± 40.30 111.84 ± 27.80 0.76
TG (mg/dL) 187.55 ± 128.57 180.71 ± 142.63 170.43 ± 87.99 0.51 171.58 ± 105.92 181.46 ± 89.15 192.96 ± 126.31 0.51 195.11 ± 142.97 162.62 ± 75.66 171.09 ± 91.17 0.74
HDL (mg/dL) 41.60 ± 6.41 45.29 ± 8.11 45.15 ± 9.83 0.08 44.29 ± 8.25 45.72 ± 11.77 41.21 ± 5.13 0.13 44.36 ± 10.51 44.94 ± 7.34 45.25 ± 10.19 0.94
Women
Age (yr) 42.26 ± 10.80 41.21 ± 11.57 41.28 ± 11.00 0.20 42.24 ± 10.64 42.72 ± 10.67 41.68 ± 10.75 0.94 42.52 ± 11.24 44.23 ± 11.28 41.66 ± 10.99 0.17
WC (cm) 88.12 ± 11.29 88.44 ± 10.59 86.87 ± 12.22 0.44 88.68 ± 11.48 90.00 ± 10.82 87.73 ± 11.70 0.15 87.81 ± 11.19 88.00 ± 11.24 87.88 ± 11.02 0.73
SBP (mmHg) 118.10 ± 22.09 114.45 ± 19.73 112.63 ± 19.72 0.02 113.52 ± 20.58 116.33 ± 18.16 117.98 ± 18.24 0.06 110.58 ± 24.45 117.02 ± 16.51 116.71 ± 21.43 0.02
DBP (mmHg) 79.05 ± 13.69 79.58 ± 14.36 77.70 ± 9.60 0.02 76.28 ± 12.21 78.66 ± 11.37 78.51 ± 12.74 0.30 77.14 ± 17.87 78.68 ± 12.11 78.80 ± 11.49 0.70
FBS (mg/dL) 107.13 ± 27.01 111.06 ± 44.05 103.66 ± 26.80 0.56 113.37 ± 77.45 109.56 ± 36.96 108.21 ± 28.37 0.39 103.09 ± 25.63 107.63 ± 20.50 112.73 ± 75.80 0.39
TG (mg/dL) 143.68 ± 78.27 134.01 ± 65.88 137.66 ± 65.96 0.84 127.43 ± 60.97 79.19 ± 148.95 142.46 ± 78.59 0.19 136.88 ± 73.71 139.41 ± 69.02 139.42 ± 71.55 0.57
HDL (mg/dL) 49.67 ± 9.84 50.90 ± 8.79 51.50 ± 11.27 0.23 50.67 ± 9.69 52.10 ± 10.94 49.49 ± 10.02 0.15 52.18 ± 10.55 50.21 ± 8.95 51.86 ± 10.77 0.30
Data are presented as mean ± standard deviation. The p obtained from analysis of variance test.
Q, quintile; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; TG, triglycerides; HDL, high-density lipoprotein.
Our findings showed that weight was associated with blood parameters and nutrient patterns (Tables 2 and 3). Of MetS components, there was no significant association between weight and HDL (p = 0.18). Also no association observed between weight and pattern 1 (p = 0.41) and pattern 2 (p = 0.07) (Table 2). Because of the significant association of weight with blood parameters, mediation analyses were carried out to test the indirect associations of the weight on blood parameters, and weight was significantly associated with these markers as the mediator.
Table 2

Association between weight with blood parameters and all of patterns

Table 2
Pattern and blood parameters Coefficient p value
SBP (mmHg) 0.03 < 0.001
DBP (mmHg) 0.03 < 0.001
TC (g/dL) 0.01 0.050
TG (g/dL) 0.02 < 0.001
HDL (mg/dL) 0.00 0.180
FBS (mg/dL) 0.01 < 0.001
Pattern 1 0.39 0.410
Pattern 2 −1.27 0.007
Pattern 3 0.84 0.070
SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein; FBS, fast blood sugar.
Table 3

Multiple mediation models (direct effect and indirect effect) of the relationship between the nutrients pattern, weight, and metabolic syndrome

Table 3
Variables Pattern 1 Pattern 2 Pattern 3
Direct effect Indirect effect Direct effect Indirect effect Direct effect Indirect effect
Coefficient p value Effect (95% CI) Coefficient p value Effect (95% CI) Coefficient p value Effect (95% CI)
SBP (mmHg) −0.17 0.25 0.01 (0.00, 0.10) 0.07 0.36 −0.04 (−0.07, −0.01) 0.07 0.38 0.02 (−0.08, 0.22)
DBP (mmHg) 0.02 0.75 0.01 (0.00, 0.11) 0.11 0.13 −0.04 (−0.08, −0.01) 0.05 0.47 0.05 (−0.09, 0.20)
TC (g/dL) 0.04 0.64 0.00 (0.00, 0.04) 0.10 0.20 −0.01 (−0.03, −0.00) 0.06 0.39 0.00 (0.00, 0.02)
TG (g/dL) 0.07 0.30 0.00 (0.00, 0.07) 0.06 0.39 −0.03 (−0.05, −0.01) −0.03 0.66 0.02 (0.00, 0.04)
HDL (mg/dL) −0.03 0.59 0.00 (0.00, 0.02) −0.09 0.18 0.00 (−0.02, 0.00) −0.02 0.75 0.00 (0.00, 0.02)
FBS (mg/dL) −0.05 0.47 0.00 (0.01, 0.05) 0.05 0.43 −0.02 (−0.04, 0.00) 0.10 0.12 0.01 (0.00, 0.03)
CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein; FBS, fasting blood sugar.
As shown in Supplementary Figures 1, 2, 3, 4, 5, the direct association between nutrient pattern 2 and SBP (R = 0.07; p = 0.36), DBP (R = 0.11; p = 0.13), TG (R = 0.06; p = 0.39), TC (R = −0.10; p = 0.20), and FBS (R = 0.05; p = 0.43) were not significant. Nutrient pattern 2 was significantly associated with body weight (R= −1.27; p = 0.007), and there was a significant association between body weight and SBP (R = 0.03; p < 0.001), DBP (R = 0.03; p < 0.001), TG (R = 0.02; p < 0.001), FBS (R = 0.01; p < 0.001) and TC (R = 0.04; p = 0.04). The second pattern shows an indirect association with SBP, DBP, TG, TC, and FBS when controlling for body weight. In Supplementary Figure 6, the direct association between nutrient pattern 1 and TG was not significant (R = −0.03; p =0.66). No significant association was found between body weight and nutrient pattern 1 (R = 0.84; p = 0.07) and a significant association between body weight and TG (R = 0.02; p < 0.001).
Multivariate adjusted odds ratios and 95% confidence intervals for MetS by sex across quintiles of nutrient patterns are detailed in Table 4. No significant association was found between the 3 nutrient patterns and MetS was seen in men and neither in women. This non-significant association remained unchanged after adjusting for age, total energy intake, smoking, job status, education level, and physical activity.
Table 4

OR (95% CI) for metabolic syndrome according to quintiles of nutrient patterns, stratified by gender

Table 4
Characteristics First nutrient pattern Second nutrient pattern Third nutrient pattern
Q1 Q3 Q5 p trend Q1 Q3 Q5 p trend Q1 Q3 Q5 p trend
Men
Model 1 1.00 0.45 (0.14–1.46) 1.69 (0.57–4.95) 0.28 1.00 0.98 (0.42–2.30) 0.94 (0.31–2.25) 0.80 1.00 1.86 (0.67–5.14) 1.26 (0.48–3.26) 0.59
Model 2 1.00 0.38 (0.11–1.32) 1.64 (0.47–5.67) 0.52 1.00 1.11 (0.45–2.70) 0.72 (0.26–2.05) 0.56 1.00 1.10 (0.33–3.62) 0.47 (0.11–2.03) 0.26
Model 3 1.00 0.36 (0.10–1.29) 1.67 (0.46–5.99) 0.49 1.00 1.15 (0.46–2.86) 0.77 (0.25–2.36) 0.57 1.00 1.15 (0.34–3.90) 0.53 (0.12–2.36) 0.32
Women
Model 1 1.00 1.03 (0.61–1.75) 0.79 (0.44–1.39) 0.38 1.00 1.37 (0.77–2.41) 1.09 (0.62–1.93) 0.92 1.00 1.27 (0.73–2.22) 1.31 (0.75–2.31) 0.50
Model 2 1.00 1.17 (0.66–2.06) 0.71 (0.38–1.33) 0.27 1.00 1.37 (0.75–2.50) 1.07 (0.58–1.99) 0.87 1.00 1.13 (0.60–2.14) 1.39 (0.64–2.99) 0.53
Model 3 1.00 1.19 (0.67–2.11) 0.71 (0.38–1.34) 0.25 1.00 1.39 (0.76–2.55) 1.13 (0.60–2.09) 0.93 1.00 1.10 (0.58–2.09) 1.30 (0.60–2.83) 0.73
Model 1: unadjusted; Model 2: age, total energy intake; Model 3: additionally adjusted for current smoking, job status, education level and physical activity.
Q, quintile; OR, odds ratio; CI, confidence interval.
In the current study, we observed that the identified nutrient patterns were not associated with MetS. However, there were some associations between adherence to nutrient patterns and MetS components. Moreover, we found that the association between adherence to the second nutrient pattern and MetS components was mediated by body weight.
The second nutrient pattern was characterized by a high loading of vitamin E, α-TF, β-carotene, and unsaturated fatty acids, such as oleic acid and PUFAs. The relevance of vitamin E and MetS was assessed by Alcalá et al. [16], and they reported that obese mice fed on a high-fat diet, with 150 mg/kg of α-TF supplementation twice weekly, enhanced insulin sensitivity and hypertriglyceridemia, which was attributed to the decline of oxidative stress and inflammatory response. Vitamin E has been shown to have anti-inflammatory [17], anti-oxidative [18, 19], and anti-hypercholesterolemic [20, 21] features through regulation of different signaling pathways [22]. MetS is an inflammatory disease that also involves oxidative stress, thus, it is posited that vitamin E may have protective effects on MetS.
A previous study revealed that MetS patients had impaired absorption of dietary vitamin E, compared to healthy participants [23]. Additionally, in a randomized, double blind, placebo-controlled trial on patients with MetS, tocotrienol supplementation decreased TC, LDL-cholesterol, and HDL-C in subjects, in comparison to baseline [24]. Serum levels of α-TF have been positively linked to central obesity (defined as WC and WHR), but BMI may only be related to α-TF in men [25]. In contrast to our results, Barzegar-Amini et al. [26] concluded that serum vitamin E is negatively associated with WC and HC; although the reduction observed in body weight was not significant.
ω-3 and ω-6 FA PUFAs were inversely associated with MetS prevalence in females [27]; whilst greater total PUFA, and its sub-types (LA or α-LA), intake was negatively associated with hypertension and positively associated with abdominal obesity in a systematic review [28]. Some evidence from observational and interventional studies is in agreement with our results, where the benefits of both ω-3 and ω-6 PUFA in decreasing the odds of MetS [29, 30, 31, 32] was evident. However, contrary results also exist [33, 34, 35].
Increased eicosapentaenoic acid (EPA) levels can significantly reduce interleukin (IL)-6 and other adipokine levels, including EPA, impeded nuclear factor-κB (NF-κB), a pro-inflammatory transcription factor, in comparison with a control group. Moreover, EPA can elicit reductions in tumor necrosis factor-α (TNF-α), and further reduce its secretion in the presence of an NF-κB inhibitor. This highlights the anti-inflammatory impact of ω-3 PUFAs and their beneficial effects in adipocyte inflammation and metabolic disorders, such as MetS [36]. It is noteworthy that the optimum dietary ratios of ω-6/ω-3 PUFA of 1/1 and 5/1 can, evidently, diminish the lipid metabolism-related gene expression, and also significantly block the expression of the inflammatory cytokines IL-1, TNF- α and IL-6 [37].
The sufficient intake of MUFA and PUFAs in the Prevención con Dieta Mediterránea (PREDIMED) study, mostly due to high ingestion of nuts and olive oil, has been putatively related to the high adherence to Mediterranean diets (MedDiet) [38], and to a lower risk of CVD [39]. Moreover, other dietary pattern score approaches to stop hypertension, new Nordic, and vegetarian diets have also been suggested as substitutions to the MedDiet, as viable alternatives to prevent or reduce MetS occurrence [40].
Low-fat diets are generally reported to elicit decreases in body weight and/or WC, independently of fatty acid consumption [41, 42]. Low-fat diets contain sufficient amounts of PUFA, or substituted by healthy sources of fats (fish, avocado, nuts, broccoli, thistle, olives, linseed and canola oil, etc.), or healthy sources of carbohydrate (whole grains, legumes, vegetables, and fruits), to elicit reductions in TG levels [41, 42, 43, 44].
The diet rich in carotenes (particularly β-carotene) is found to be inversely associated with MetS and its components, which can be attributed to beneficial impacts on glucose metabolism [45]. In another study [46], intakes of dietary α-carotene, β-carotene, and lycopene conferred favorable effects on glucose metabolism in individuals at high risk for T2DM.
One of the strengths of our study is the usage of a validated food frequency questionnaire and adjustment for potential confounders in the analyses. However, some degree of measurement error is inevitable. Furthermore, trained dieticians were recruited to gather the food frequency data via interview; it is likely that this approach (as compared with self-administration) reduced any possible misclassification error. However, some limitations exist. This study was cross-sectional in design; thus, causal inferences cannot be concluded. Although the factor analysis method is identified to represent real-world dietary behaviors [47], this approach is founded on some subjective decisions such as naming nutrient patterns, method of rotation, and selection of food groups, which can trigger an overall assessment bias, but, it is helpful for us to have better understanding of diet-disease relations [48]. Another bias seen in some articles [49, 50] is about the gender of participants. The reasons for the observed gender discrepancy in the associations between nutrient patterns with MetS are not understood, but it can be at least due to the differential effects of gonadal steroids on body composition and appetite. Also, behavioral, sociocultural and genetic factors may be part of the cause. Differences in the accuracy of dietary assessment among females and males could be another reason for this inconsistency. Our results are just limited to adults and other age ranges are not involved but because of enough sample size and method which is used for data collection, the power of study seems to be good for judgment.
In conclusion, the intake of the high amount of vitamin E, α-TF, β-carotene, and unsaturated fatty acids, such as oleic acid and PUFAs, is inversely associated with Mets components which was mediated by body weight. Finally, the authors assert that prospective and high-quality clinical trial studies are necessary to explain the possible causal relationship of this result.

Conflict of Interest: The authors declare that they have no competing interests.

Special thanks go to all those who participated in this study.

Supplementary Table 1

Characteristics of the investigating subjects
cnr-9-318-s001.xls

Supplementary Table 2

Principal factor loading of nutrients intake
cnr-9-318-s002.xls

Supplementary Table 3

Nutrient intakes across quintiles of nutrient patterns' scores
cnr-9-318-s003.xls

Supplementary Figure 1

Multiple mediation models of the relationship between the second pattern, weight, and SBP.
cnr-9-318-s004.ppt

Supplementary Figure 2

Multiple mediation models of the relationship between the second pattern, weight, and DBP.
cnr-9-318-s005.ppt

Supplementary Figure 3

Multiple mediation models of the relationship between the second pattern, weight, and TG.
cnr-9-318-s006.ppt

Supplementary Figure 4

Multiple mediation models of the relationship between the second pattern, weight, and TC.
cnr-9-318-s007.ppt

Supplementary Figure 5

Multiple mediation models of the relationship between the second pattern, weight, and FBS.
cnr-9-318-s008.ppt

Supplementary Figure 6

Multiple mediation models of the relationship between the first pattern, weight, and TG.
cnr-9-318-s009.ppt
  • 1. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep 2018;20:12.
  • 2. Sattar N, Gaw A, Scherbakova O, Ford I, O'Reilly DS, Haffner SM, Isles C, Macfarlane PW, Packard CJ, Cobbe SM, Shepherd J. Metabolic syndrome with and without C-reactive protein as a predictor of coronary heart disease and diabetes in the West of Scotland Coronary Prevention Study. Circulation 2003;108:414-419.
  • 3. Mukai N, Doi Y, Ninomiya T, Hata J, Yonemoto K, Iwase M, Iida M, Kiyohara Y. Impact of metabolic syndrome compared with impaired fasting glucose on the development of type 2 diabetes in a general Japanese population: the Hisayama study. Diabetes Care 2009;32:2288-2293.
  • 4. Doi Y, Ninomiya T, Hata J, Yonemoto K, Arima H, Kubo M, Tanizaki Y, Iwase M, Iida M, Kiyohara Y. Proposed criteria for metabolic syndrome in Japanese based on prospective evidence: the Hisayama study. Stroke 2009;40:1187-1194.
  • 5. Rochlani Y, Pothineni NV, Kovelamudi S, Mehta JL. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis 2017;11:215-225.
  • 6. Delavari A, Forouzanfar MH, Alikhani S, Sharifian A, Kelishadi R. First nationwide study of the prevalence of the metabolic syndrome and optimal cutoff points of waist circumference in the Middle East: the national survey of risk factors for noncommunicable diseases of Iran. Diabetes Care 2009;32:1092-1097.
  • 7. Nava LT, Zambrano JM, Arviso KP, Brochetti D, Becker KL. Nutrition-based interventions to address metabolic syndrome in the Navajo: a systematic review. J Clin Nurs 2015;24:3024-3045.
  • 8. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 2002;13:3-9.
  • 9. Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 2004;62:177-203.
  • 10. Sahyoun NR, Jacques PF, Zhang XL, Juan W, McKeown NM. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 2006;83:124-131.
  • 11. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3143-3421.
  • 12. Stanhope KL. Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med 2012;63:329-343.
  • 13. Willett W. Nutritional epidemiology. New York: Oxford University Press; 2012.
  • 14. Bolton-Smith C, Woodward M, Tunstall-Pedoe H. The Scottish Heart Health Study. Dietary intake by food frequency questionnaire and odds ratios for coronary heart disease risk. II. The antioxidant vitamins and fibre. Eur J Clin Nutr 1992;46:85-93.
  • 15. Kim JO, Mueller CW. Factor analysis: statistical methods and practical issues. New York: Sage; 1978.
  • 16. Alcalá M, Sánchez-Vera I, Sevillano J, Herrero L, Serra D, Ramos MP, Viana M. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity. Obesity (Silver Spring) 2015;23:1598-1606.
  • 17. Siddiqui S, Ahsan H, Khan MR, Siddiqui WA. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression. Toxicol Appl Pharmacol 2013;273:314-324.
  • 18. Kuhad A, Chopra K. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy. Neuropharmacology 2009;57:456-462.
  • 19. Siddiqui S, Rashid Khan M, Siddiqui WA. Comparative hypoglycemic and nephroprotective effects of tocotrienol rich fraction (TRF) from palm oil and rice bran oil against hyperglycemia induced nephropathy in type 1 diabetic rats. Chem Biol Interact 2010;188:651-658.
  • 20. Salman Khan M, Akhtar S, Al-Sagair OA, Arif JM. Protective effect of dietary tocotrienols against infection and inflammation-induced hyperlipidemia: an in vivo and in silico study. Phytother Res 2011;25:1586-1595.
  • 21. Yu SG, Thomas AM, Gapor A, Tan B, Qureshi N, Qureshi AA. Dose-response impact of various tocotrienols on serum lipid parameters in 5-week-old female chickens. Lipids 2006;41:453-461.
  • 22. Rimbach G, Minihane AM, Majewicz J, Fischer A, Pallauf J, Virgli F, Weinberg PD. Regulation of cell signalling by vitamin E. Proc Nutr Soc 2002;61:415-425.
  • 23. Mah E, Sapper TN, Chitchumroonchokchai C, Failla ML, Schill KE, Clinton SK, Bobe G, Traber MG, Bruno RS. α-Tocopherol bioavailability is lower in adults with metabolic syndrome regardless of dairy fat co-ingestion: a randomized, double-blind, crossover trial. Am J Clin Nutr 2015;102:1070-1080.
  • 24. Heng KS, Rahman HA, Stanslas J, Ooi CP, Loh SP. Potential of mixed tocotrienol supplementation to reduce cholesterol and cytokines level in adults with metabolic syndrome. Malays J Nutr 2015;21:231-243.
  • 25. Wallström P, Wirfält E, Lahmann PH, Gullberg B, Janzon L, Berglund G. Serum concentrations of beta-carotene and alpha-tocopherol are associated with diet, smoking, and general and central adiposity. Am J Clin Nutr 2001;73:777-785.
  • 26. Barzegar-Amini M, Ghazizadeh H, Seyedi SM, Sadeghnia HR, Mohammadi A, Hassanzade-Daloee M, Barati E, Kharazmi-Khorassani S, Kharazmi-Khorassani J, Mohammadi-Bajgiran M, Tavallaie S, Ferns GA, Mouhebati M, Ebrahimi M, Tayefi M, Ghayour-Mobarhan M. Serum vitamin E as a significant prognostic factor in patients with dyslipidemia disorders. Diabetes Metab Syndr 2019;13:666-671.
  • 27. Park S, Ahn J, Kim NS, Lee BK. High carbohydrate diets are positively associated with the risk of metabolic syndrome irrespective to fatty acid composition in women: the KNHANES 2007-2014. Int J Food Sci Nutr 2017;68:479-487.
  • 28. Tortosa-Caparrós E, Navas-Carrillo D, Marín F, Orenes-Piñero E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit Rev Food Sci Nutr 2017;57:3421-3429.
  • 29. Babio N, Toledo E, Estruch R, Ros E, Martínez-González MA, Castañer O, Bulló M, Corella D, Arós F, Gómez-Gracia E, Ruiz-Gutiérrez V, Fiol M, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pintó X, Basora J, Sorlí JV, Salas-Salvadó J. PREDIMED Study Investigators. Mediterranean diets and metabolic syndrome status in the PREDIMED randomized trial. CMAJ 2014;186:E649-57.
  • 30. Baik I, Abbott RD, Curb JD, Shin C. Intake of fish and n-3 fatty acids and future risk of metabolic syndrome. J Am Diet Assoc 2010;110:1018-1026.
  • 31. Chan TF, Lin WT, Huang HL, Lee CY, Wu PW, Chiu YW, Huang CC, Tsai S, Lin CL, Lee CH. Consumption of sugar-sweetened beverages is associated with components of the metabolic syndrome in adolescents. Nutrients 2014;6:2088-2103.
  • 32. Shab-Bidar S, Hosseini-Esfahani F, Mirmiran P, Hosseinpour-Niazi S, Azizi F. Metabolic syndrome profiles, obesity measures and intake of dietary fatty acids in adults: Tehran Lipid and Glucose Study. J Hum Nutr Diet 2014;27(Suppl 2):98-108.
  • 33. Ahola AJ, Harjutsalo V, Thorn LM, Freese R, Forsblom C, Mäkimattila S, Groop PH. The association between macronutrient intake and the metabolic syndrome and its components in type 1 diabetes. Br J Nutr 2017;117:450-456.
  • 34. Ebbesson SO, Tejero ME, Nobmann ED, Lopez-Alvarenga JC, Ebbesson L, Romenesko T, Carter EA, Resnick HE, Devereux RB, MacCluer JW, Dyke B, Laston SL, Wenger CR, Fabsitz RR, Comuzzie AG, Howard BV. Fatty acid consumption and metabolic syndrome components: the GOCADAN study. J Cardiometab Syndr 2007;2:244-249.
  • 35. Lai YH, Petrone AB, Pankow JS, Arnett DK, North KE, Ellison RC, Hunt SC, Djoussé L. Association of dietary omega-3 fatty acids with prevalence of metabolic syndrome: the National Heart, Lung, and Blood Institute Family Heart Study. Clin Nutr 2013;32:966-969.
  • 36. Siriwardhana N, Kalupahana NS, Fletcher S, Xin W, Claycombe KJ, Quignard-Boulange A, Zhao L, Saxton AM, Moustaid-Moussa N. n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-κB-dependent mechanisms. J Nutr Biochem 2012;23:1661-1667.
  • 37. Duan Y, Li F, Li L, Fan J, Sun X, Yin Y. n-6:n-3 PUFA ratio is involved in regulating lipid metabolism and inflammation in pigs. Br J Nutr 2014;111:445-451.
  • 38. Bibiloni MD, Julibert A, Bouzas C, Martínez-González MA, Corella D, Salas-Salvadó J, Zomeño MD, Vioque J, Romaguera D, Martínez JA, Wärnberg J, López-Miranda J, Estruch R, Bueno-Cavanillas A, Arós F, Tinahones F, Serra-Majem L, Martín V, Lapetra J, Vázquez C, Pintó X, Vidal J, Daimiel L, Delgado-Rodríguez M, Matía P, Ros E, Fernández-Carrión R, Garcia-Rios A, Zulet MA, Orozco-Beltrán D, Schröder H, Fitó M, Bulló M, Basora J, Cenoz JC, Diez-Espino J, Toledo E, Tur JA. Nut consumptions as a marker of higher diet quality in a Mediterranean population at high cardiovascular risk. Nutrients 2019;11:754.
  • 39. Guasch-Ferré M, Bulló M, Estruch R, Corella D, Martínez-González MA, Ros E, Covas M, Arós F, Gómez-Gracia E, Fiol M, Lapetra J, Muñoz MÁ, Serra-Majem L, Babio N, Pintó X, Lamuela-Raventós RM, Ruiz-Gutiérrez V, Salas-Salvadó J. PREDIMED Study Group. Dietary magnesium intake is inversely associated with mortality in adults at high cardiovascular disease risk. J Nutr 2014;144:55-60.
  • 40. Pérez-Martínez P, Mikhailidis DP, Athyros VG, Bullo M, Couture P, Covas MI, de Koning L, Delgado-Lista J, Díaz-López A, Drevon CA, Estruch R, Esposito K, Fitó M, Garaulet M, Giugliano D, García-Ríos A, Katsiki N, Kolovou G, Lamarche B, Maiorino MI, Mena-Sánchez G, Muñoz-Garach A, Nikolic D, Ordovás JM, Pérez-Jiménez F, Rizzo M, Salas-Salvadó J, Schröder H, Tinahones FJ, de la Torre R, van Ommen B, Wopereis S, Ros E, López-Miranda J. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation. Nutr Rev 2017;75:307-326.
  • 41. Paniagua JA, Pérez-Martinez P, Gjelstad IM, Tierney AC, Delgado-Lista J, Defoort C, Blaak EE, Risérus U, Drevon CA, Kiec-Wilk B, Lovegrove JA, Roche HM, López-Miranda J. LIPGENE Study Investigators. A low-fat high-carbohydrate diet supplemented with long-chain n-3 PUFA reduces the risk of the metabolic syndrome. Atherosclerosis 2011;218:443-450.
  • 42. Poppitt SD, Keogh GF, Prentice AM, Williams DE, Sonnemans HM, Valk EE, Robinson E, Wareham NJ. Long-term effects of ad libitum low-fat, high-carbohydrate diets on body weight and serum lipids in overweight subjects with metabolic syndrome. Am J Clin Nutr 2002;75:11-20.
  • 43. Wang DD, Hu FB. Dietary fat and risk of cardiovascular disease: recent controversies and advances. Annu Rev Nutr 2017;37:423-446.
  • 44. Yubero-Serrano EM, Delgado-Lista J, Tierney AC, Perez-Martinez P, Garcia-Rios A, Alcala-Diaz JF, Castaño JP, Tinahones FJ, Drevon CA, Defoort C, Blaak EE, Dembinska-Kieć A, Risérus U, Lovegrove JA, Perez-Jimenez F, Roche HM, Lopez-Miranda J. Insulin resistance determines a differential response to changes in dietary fat modification on metabolic syndrome risk factors: the LIPGENE study. Am J Clin Nutr 2015;102:1509-1517.
  • 45. Sluijs I, Beulens JW, Grobbee DE, van der Schouw YT. Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J Nutr 2009;139:987-992.
  • 46. Ylönen K, Alfthan G, Groop L, Saloranta C, Aro A, Virtanen SM. Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of type 2 diabetes: the Botnia Dietary Study. Am J Clin Nutr 2003;77:1434-1441.
  • 47. Moeller SM, Reedy J, Millen AE, Dixon LB, Newby PK, Tucker KL, Krebs-Smith SM, Guenther PM. Dietary patterns: challenges and opportunities in dietary patterns research an Experimental Biology workshop, April 1, 2006. J Am Diet Assoc 2007;107:1233-1239.
  • 48. Beydoun MA, Shroff MR, Chen X, Beydoun HA, Wang Y, Zonderman AB. Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr 2011;141:903-913.
  • 49. Khayyatzadeh SS, Moohebati M, Mazidi M, Avan A, Tayefi M, Parizadeh SM, Ebrahimi M, Heidari-Bakavoli A, Azarpazhooh MR, Esmaily H, Ferns GA, Nematy M, Safarian M, Ghayour-Mobarhan M. Nutrient patterns and their relationship to metabolic syndrome in Iranian adults. Eur J Clin Invest 2016;46:840-852.
  • 50. Park SH, Lee KS, Park HY. Dietary carbohydrate intake is associated with cardiovascular disease risk in Korean: analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). Int J Cardiol 2010;139:234-240.

Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:

Include:

Association of Nutrient Patterns with Metabolic Syndrome and Its Components in Iranian Adults
Clin Nutr Res. 2020;9(4):318-331.   Published online October 30, 2020
Download Citation

Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

Format:
Include:
Association of Nutrient Patterns with Metabolic Syndrome and Its Components in Iranian Adults
Clin Nutr Res. 2020;9(4):318-331.   Published online October 30, 2020
Close
Association of Nutrient Patterns with Metabolic Syndrome and Its Components in Iranian Adults
Association of Nutrient Patterns with Metabolic Syndrome and Its Components in Iranian Adults
Table 1 Components of metabolic syndrome across quintiles of nutrient patterns' scores

Data are presented as mean ± standard deviation. The p obtained from analysis of variance test.

Q, quintile; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; TG, triglycerides; HDL, high-density lipoprotein.

Table 2 Association between weight with blood parameters and all of patterns

SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein; FBS, fast blood sugar.

Table 3 Multiple mediation models (direct effect and indirect effect) of the relationship between the nutrients pattern, weight, and metabolic syndrome

CI, confidence interval; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; TG, triglyceride; HDL, high density lipoprotein; FBS, fasting blood sugar.

Table 4 OR (95% CI) for metabolic syndrome according to quintiles of nutrient patterns, stratified by gender

Model 1: unadjusted; Model 2: age, total energy intake; Model 3: additionally adjusted for current smoking, job status, education level and physical activity.

Q, quintile; OR, odds ratio; CI, confidence interval.