Nutritional Factors Affecting Mental Health

So Young Lim, Eun Jin Kim, Arang Kim, Hee Jae Lee, Hyun Jin Choi, Soo Jin Yang

1Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
2Department of Food and Nutrition, Seoul Women’s University, Seoul 01797, Korea

ABSTRACT

Dietary intake and nutritional status of individuals are important factors affecting mental health and the development of psychiatric disorders. Majority of scientific evidence relating to mental health focuses on depression, cognitive function, and dementia, and limited evidence is available about other psychiatric disorders including schizophrenia. As life span of human being is increasing, the more the prevalence of mental disorders is, the more attention arises. Lists of suggested nutritional components that may be beneficial for mental health are omega-3 fatty acids, phospholipids, cholesterol, niacin, folate, vitamin B6, and vitamin B12. Saturated fat and simple sugar are considered detrimental to cognitive function. Evidence on the effect of cholesterol is conflicting; however, in general, blood cholesterol levels are negatively associated with the risk of depression. Collectively, the aims of this review are to introduce known nutritional factors for mental health, and to discuss recent issues of the nutritional impact on cognitive function and healthy brain aging.

Keywords: Cognitive function; Dementia; Depression; Healthy brain aging; Mental health

INTRODUCTION

Mental well-being is a core component of optimal health, and is a status that individuals can manage stress from daily living and make positive achievements pursuing public interest and contribution to the community [1]. Maintaining individual’s mental health is important to improve personal life values, to reduce medical cost and other social expenses to deal with mental disorders, and to enhance national competitiveness.

Mental disorders, which are the same as psychiatric disorders, are clusters of syndromes which disturb an individual’s cognition, emotion regulation or behavior [2]. Common mental disorders include bipolar disorders (manic disorder, depression, and manic-depression), dementia, schizophrenia, and panic disorder [2]. Several factors affecting the development of mental disorders include genetic factors, stress, diet, physical inactivity, drugs, and other environmental factors [3-5]. Among these factors, dietary factors may aggravate or ameliorate symptoms and the progression of the disorders although those are not major etiologies. Nutritional factors having beneficial effect on mental health are polyunsaturated fatty acids (PUFAs), especially omega-3 FAs, phospholipids, cholesterol, niacin, folate,
Nutritional factors for mental health

Compared to Omega-6 FAs, Omega-3 FAs are important for brain health. These fatty acids consist of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). They are contained in flaxseed oil and soybean oil, and the main dietary source of eicosapentaenoic acid is fish oil. These fatty acids are potent activators of transcription factors and inflammatory modulators [29,30]. Anti-inflammatory activities of omega-3 fatty acids are often related to the suppression of excess extents of pro-inflammatory actions of omega-6 fatty acids [29].

Among several mental disorders, prevalence of dementia is evidently increasing as the portion of aged population is growing. In subjects with dementia at stage 1a (age-associated memory impairment) and 1b (mild cognitive impairment), low blood levels of omega-3 FAs were observed [31]. As dementia progresses to stage 2 (early dementia) and stage 3 (dementia with behavioral symptoms), mild and moderate protein-energy malnutrition (PEM) often develops, which requires oral nutritional supplements with protein and energy supplementation rather than omega-3 fatty acid intervention [31]. In case of severe dementia
Table 1. Double blind, randomized, placebo-controlled trials involving omega-3 fatty acids (FAs) supplementation and major mental disorders

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Study design</th>
<th>Daily amounts of omega-3 FAs</th>
<th>Main findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>[32]</td>
<td>33 mild AD patients, omega-3 FAs (n = 18) and placebo (n = 15) for 6 mon</td>
<td>2.3 g (0.6 g EPA + 1.7 g DHA)</td>
<td>Reduce CSF levels of AD biomarkers</td>
</tr>
<tr>
<td>[33]</td>
<td>295 mild to moderate AD patients, DHA (n = 171) and placebo (n = 124) for 18 mon</td>
<td>2 g DHA</td>
<td>No effect on cognitive function</td>
</tr>
<tr>
<td>[34]</td>
<td>46 depressed women aged 66–95 years, omega-3 FAs (n = 22) and placebo (n = 24) for 8 wk</td>
<td>2.5 g (1.67 g EPA + 0.83 g DHA)</td>
<td>Ameliorate depressive symptoms and improve quality of life</td>
</tr>
<tr>
<td>[35]</td>
<td>36 pregnant/depressive women, omega-3 FAs (n = 18) and placebo (n = 18) for 8 wk</td>
<td>3.4 g (2.2 g EPA + 1.2 g DHA)</td>
<td>Lower depressive symptom ratings on the EPDS and BDI</td>
</tr>
<tr>
<td>[36]</td>
<td>60 schizophrenia patients, omega-3 FAs (n = 30) and placebo (n = 30) for 8 wk</td>
<td>1.0 g</td>
<td>Reduce PANSS score, general psychopathologic and total scores</td>
</tr>
<tr>
<td>[37]</td>
<td>71 first-episode schizophrenia patients aged 16–35 yr, 26 wk</td>
<td>2.2 g (1.32 g EPA + 0.88 g DHA)</td>
<td>Reduce the intensity of symptoms and improve the level of functioning</td>
</tr>
</tbody>
</table>

Table 2. Altered phospholipids in subjects with Alzheimer’s disease (AD)

<table>
<thead>
<tr>
<th>Ref. No.</th>
<th>Study design</th>
<th>Sample type</th>
<th>Altered phospholipids</th>
</tr>
</thead>
<tbody>
<tr>
<td>[41]</td>
<td>Healthy control (n = 73), amnestic MCI/AD (n = 46), and converter (n = 28) aged 70 yr and older</td>
<td>Plasma</td>
<td>LysOPC a C18:2, PC aa C36:6, PC aa C38:0, PC aa C38:6, PC aa C40:1, PC aa C40:2, PC aa C40:6, and PC ae C40:6 were depleted in the plasma of the converter subjects</td>
</tr>
<tr>
<td>[43]</td>
<td>Healthy control (n = 46), MCI (n = 143), and AD (n = 47)</td>
<td>Serum</td>
<td>PC (18:0/20:4), PC (16:0/18:2), and PC (O-18:0/18:2) were decreased in AD</td>
</tr>
<tr>
<td>[44]</td>
<td>Healthy control (n = 17) and AD (n = 19)</td>
<td>Serum</td>
<td>PC (16:1/16:1), PC (16:1/16:0), PC (16:0/16:0), PC (16:0/18:3), PC (16:0/18:2), PC (16:0/18:1), PC (16:0/18:0), PC (18:2/18:2), PC (18:2/18:1), PC (18:1/18:1), and PC (18:0/18:0) were increased in AD, while PC (16:0/20:5), PC (18:2/20:3), PC (16:0/22:6), PC (16:0/22:5), PC (18:2/20:4), PC (18:1/20:3), PC (18:0/20:3), and PC (18:0/22:6) were decreased in AD</td>
</tr>
</tbody>
</table>

MCI, mild cognitive impairment; PC, phosphatidylcholine; PC aa, diacyl form; PC ae, acyl-alkyl form.

Phospholipids and cholesterol

Phospholipid is a principal component to maintain integrity and functionality of neuronal membrane, and is recently suggested as a blood biomarker for mental health. Altered plasma phospholipids were observed in patients with mild cognitive impairment (MCI) and AD [41,42]. Metabolome analyses enabled to screen phospholipid profiles and to identify altered levels in response to specific conditions in a comprehensive way [43,44]. Ether phospholipids, phosphatidylcholines, sphingomyelins and sterols were low in AD patients, and three metabolites [2,4-dihydroxybutanoic acid, unidentified carboxylic acid, and phosphatidylcholine (PC (16:0/16:0))] were identified as signature markers for the possible progression of MCI to AD [43]. Examples of altered phospholipids in subjects with AD are listed in Table 2 [41,43-45].

Cholesterol also constitutes neuronal membrane to be responsible for fluidity, and acts as a signaling modulator for gene transcription, which is involved in nutrientsmetabolism and inflammation. In a large Korean Cancer Prevention Study cohort (n = 1,329,525), risk of depression was related to low levels of serum cholesterol concentration, suggesting the
possible needs of cholesterol-raising regimen in subjects with depression [46]. However, a dietary intervention in increasing blood cholesterol has not been tried because the cholesterol-raising regimen such as high intakes of saturated fat, trans-fat, cholesterol, and total calories can cause increased the risk of other metabolic diseases (e.g. obesity, diabetes, and CVD).

Vitamin B: niacin, folate, vitamin B6, and vitamin B12

Vitamin B is involved in energy metabolism as forms of cofactors, nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). In a NAD-FAD-dependent and – independent ways, the B vitamins, especially niacin, folate, vitamin B6, and vitamin B12 affect mental health. Famous hypothesis for mental disorders is ‘homocysteine hypothesis’ that excess homocysteine causes the development of psychiatric symptoms. Particularly, folate, vitamin B6, and vitamin B12 are involved in homocysteine metabolism, and low levels of the B vitamins and high levels of homocysteine were observed in subjects with MCI, dementia, and depression [9,17,49,48]. Suggested mechanisms underlying homocysteine action on brain function are impairments in cerebral vasculature and function of neurotransmitters, and increases in neurotoxicity and oxidative stress [40,49,50]. Niacin’s action on brain function is less studied compared with other vitamin B nutrients. A case-study reported that a subject with pellagra, a disease from niacin deficiency, showed psychiatric disorders, mainly behavioral deterioration and dementia, which were recovered by niacin intervention [51]. Recent studies on dietary intervention of niacin, especially nicotinamide riboside (NR), suggested that NR exerts neuroprotective effects, and restores cognitive decline by the regulation of beta-secretase 1 degradation and expressions of mitochondrial metabolism-related genes (aconitase, citrate synthase, glucose phosphate isomerase 1, phosphoglycerate kinase, and pyruvate dehydrogenase kinase) relating to the action of proliferator-activated receptor-γ coactivator 1α [52,53]. So far, vitamin B nutrients intervention relating to brain function showed equivocal results regarding their efficacy on cognitive function [54-59].

Antioxidants

The brain is vulnerable to oxidative stress because it has lipid-rich area especially in neuronal membrane and is metabolically active. Tight balance between oxidative stress and antioxidant system is required to maintain the structural integrity and optimal functions of brain [60]. Vitamins A, C, and E are major non-enzymatic antioxidants in foods, and there are emerging evidences that these antioxidant vitamins are protective against cognitive decline and mental disorders including anxiety disorders, attention-deficit/hyperactivity disorder, autism, bipolar disorder, depression, schizophrenia, and substance abuse [6,61-63]. Low blood levels of antioxidant vitamins are observed in subject with various mental disorders. Perinatal retinol deficiency shown as low levels of serum retinol concentrations is significantly associated with the increased risk (more than threefold) of schizophrenia and other schizophrenia spectrum disorders in the Prenatal Determinants of Schizophrenia study [64]. Subjects with high tertile of vitamins C and E intakes have lower risk of AD than subjects with lower intake tertiles of these antioxidant vitamins in the Rotterdam Study [65]. Especially, amyloid-beta deposition in brain relating to increased oxidative stress is one of the major causes of AD [66], and low levels of vitamins C and E in blood and/or cerebrospinal fluid were observed in AD patients [67,68]. Vitamin E intervention reduces amyloid-beta deposition, reactive oxygen species as well as nitric oxide synthesis, and prevents against cognitive impairment and the progression to AD [69]. Recently, a new approach to identify underlying mechanisms of neurodegenerative disorders and to investigate the intervention efficacy to improve the symptoms of mental disorders has applied. Application of redox proteomics approach enables to identity disease stage-specific modifications in oxidative stress-related
molecules and to demonstrate a cluster of changes in protein oxidative modification by
the specific nutritional intervention [70]. In general, existing intervention studies show
beneficial effects of antioxidants on improving general symptoms of mental disorders, and
the optimal combinations and the recommended duration of antioxidant vitamin intake need
to be investigated.

Saturated fat and sugar
Because many factors affecting mental health are overlapped as those for CVD [13], dietary
saturated fat and Western-style diet may impair cognitive function [71-73], and subjects with
high BMI have low scores of a 37-item version of the Mini-Mental State Examination [74].
High levels of blood sugar due to excess sugar intake or uncontrolled blood sugar are main
manifestations of diabetes. Recent findings consistently reported the positive association
between diabetes and dementia [75,76], and diabetes induces AD in animal models [77,78].
Also, higher blood glucose and HbA1c concentrations were associated with reduced memory
capacity and structural changes in hippocampus in cohort of healthy, older, nondiabetic
individuals without dementia [79]. Intervention studies should focus on the development
of practical dietary guidelines for each mental disorder and the identification of effective
ways to compromise the negative effects of these saturated fat and simple sugars on mental
disorders. Identifying the optimal dietary patterns such as Mediterranean diet is one of
promising ways to find the effective dietary guidelines [25].

CONCLUSION
As the world is aging rapidly, attention on aging-related mental disorders has increased.
Increased R & D planning and investment relating to these illnesses aim to reduce medical
cost burden and to improve mental health as well as quality of life. Based on current
evidence, nutritional factors are important for mental well-being. Especially, eating balanced
meals on a regular basis and consuming nutrients for mental health including omega-3
FAs, antioxidants, niacin, folate, vitamin B6, and vitamin B12 at recommended dietary
intake levels are suggested. Development of dietary guideline that is specific to each type
and stage of mental disorder, and the identification of nutritional biomarkers on cognitive
functions are suggested to study in the future. Because mental disorders are heterogeneous
in symptoms and etiologies, well-designed diet intervention study on large cohorts is
guaranteed to identify effective nutritional strategy.

REFERENCES
1. Manwell LA, Barbic SP, Roberts K, Durisko Z, Lee C, Ware E, McKenzie K. What is mental health?
 Evidence towards a new definition from a mixed methods multidisciplinary international survey. BMJ
 Open 2015;5:e007079. [PUBMED] [CROSSREF]
3. Pinto RQ, Soares I, Carvalho-Correia E, Mesquita AR. Gene-environment interactions in psychopathology
 mechanisms and nutritional interventions. Nutrients 2015;7:6719-38. [PUBMED] [CROSSREF]

71. Francis HM, Stevenson RJ. Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behav Neurosci 2011;125:943-55.

